Stage-bottle logic

OTHREE THERMAL PROTECTION

There are different schools of thought about the “best” way to manage gas volume when cave diving with stage bottles.

The so-called traditional method is to treat the gas carried in stages, exactly as the primary gas supply: breathe one-third on the way in; one-third on the way out; and leave one-third for contingencies. If nothing hits the fan on a dive following this method, divers surface with stages, and primary cylinders each about one-third full.

Yet another option is “half + 15.” With this method, contingency gas for the stage is carried in the primary cylinders. This method requires a little more thought and arithmetic; but is considered by some to be the most conservative and best method when multi-staging. If everything goes smoothly when employing this method, divers surface with stages close to empty, but with all the contingency gas in their primary cylinders, which — with a single stage — translates into the primaries (twins or sidemount) being around half-full or more.

And finally there’s the seat-of-your-pants method which like half + 15, allows around half the volume of the stage bottle to be breathed, but critically, unlike half + 15, does NOT preserve any additional contingency gas in one’s primary cylinders. Provided nothing goes awry, divers using this “technique” surface with empty stages and primary cylinders with about one-third remaining. You don’t have to have a phD. in risk assessment to realize this is the most “liberal” way to dive stages; if anything dramatic happens, it can mean that divers do not surface at all.

But let’s leave discussion on the pros and cons of each method as the topic for a later blog post. Let’s focus instead on an error we should avoid when diving with stages in a cave regardless of which gas management rule we follow. That error is dropping a stage immediately its turn pressure has been reached.

It seems to be a more logical, more conservative, and therefore better practice to carry the stage and it’s extra gas a little further into the penetration.

Let’s look at a couple of disaster scenarios, and see why the habit of carry stage bottles a little deeper tends to be the better option.

Two divers (the ubiquitous Diver A and Diver B) have planned a stage cave dive. For the sake of simplicity, each is using the same size primary cylinders and each has the same sized aluminum stage bottle. Each has identical consumption, and fill pressures in all cylinders are identical. (An unlikely situation, but convenient for our purposes!)

Also, to forego any confusion over bar/litres or PSI/cubic feet, let’s consider the starting pressure in the primary bottles as 3P; and in the single stages as 3S. Our divers, A and B opt to dive following the Rule of Thirds in both primary and stage bottles.

OK, scenario one: Our divers begin their dive and, conventionally, breathe from their identical stages to start their dive. After a pressure drop of 1S, they drop their stages… each has 2S of gas remaining .

They swim on breathing primary gas. They each consume 1P of primary gas and signal “turn the dive.” At precisely this moment, Murphy joins their dive, and Diver A has a massive problem with his primary gas supply. He signals his buddy, and they share gas. Now Diver A and Diver B are breathing from Diver B’s 2P volume of gas.

If things go well — no entanglement, no slowing down because of restrictions, no elevated breathing rates, no taking a wrong turn in the confusion, and no arguments over navigation — they make it back to their stages with zero pressure in Diver B’s primary cylinders.

They grab their stages, and spend the rest of their exit thinking about how close a call they just had. They each surface with 1S pressure of gas in their stages, but zero in their primaries.

OK, scenario two is similar: But in this case Diver A and B when they have consumed 1S of the gas in their stages, switch to their primary gas, and opt to carry their stages a five or six minutes, or more, further into the cave before dropping them.

At the same point in the dive — just after the turn — Diver A suffers the same disaster, and has nothing to breathe. So, both exit breathing from Diver B’s 2P volume of gas; however, in this case, they reach their stages a few minutes earlier than in scenario one. There is gas in Diver B’s primary cylinders when they pick up their stages and continue their exit, during which they give thanks that they carried their stages further into the cave.

They surface with less than 1S of gas in each stage having perfectly justifiably used some of the reserve contingency gas in those stages to exit calmly. Diver B has some gas in her primaries; and, as in scenario one, Diver A’s cylinders are still empty.

Now we might argue the likelihood of the type of complete gas loss Diver A suffered in both scenarios one and two as remote… highly rare, probably impossible. But what cannot be disputed is that in scenario two, by carrying their stages for just a few extra minutes during their swim in, they had contingency gas placed in a better place than in scenario one.

We can debate how best to manage contingency gas volumes in stages (there may be benefits to each method), but in most cases it seems a better, more logical option to think before you drop; and wait.

Dive Safe!

Advertisement

A thought experiment concerning “team bailout” when diving CCR in a cave…

LongO'THREE

First off: Can anyone explain the rationale behind “Team Bailout?”

Hang on… that needs to be rephrased.

Let’s start with this: Is it just me or is the concept of “Team Bailout” for CCR Cave Diving just bat-shit crazy?

Yea, that’s way closer to what I was thinking…

Ok, for those of you who may not be familiar with the team bailout concept, it suggests that a buddy team diving CCRs in a cave environment – you know, wet rocks, hard limestone overhead, perhaps an hour or more from the surface – that they carry sufficient bailout gas “…to get one team member back to fresh air from the point of furthest penetration.”

In certain circumstances, this approach may sufficiently protect team members from harm, but those circumstances should not include the category of diving the vast majority of us engage in.  I believe, a better, more satisfactory practice is for EACH diver to carry MORE gas than is required to get themselves back to fresh air from the point of furthest penetration.

The arguments I’ve heard against using this more conservative tactic is: 1) carrying multiple bailout cylinders is a pain; 2) the likelihood of more than one CCR failure among a team is too slight to consider; 3) calculations for the volume of gas required in a high-stress situation adhere to a well-defined formula corrected for all variables, and therefore it is possible to calculate with a degree of accuracy sufficient to be safe.

Experience is a better guide to best practice behavior than deductive logic, and I have limited experience in this area. So, perhaps my paranoia is unjustified; but here’s a scenario we might all give some thought to before our next cave dive.

Here goes:
Three CCR divers were in the back of a low-flow cave. Each carried an aluminum 40 filled to capacity, which lumped together was enough gas to get any one of them out of the cave and back to dry land. Even at double their normal consumption rate, this was the case. Their dive was well within the parameters of team bailout therefore.

At the worst possible time, Diver A’s CCR went belly up. He could not revive it in any way, and has to bailout. The team began its swim out. A little sooner than expected, but still more than one-third of the way out, Diver A’s bailout cylinder was empty, and he asked Diver B for her cylinder. She suddenly realized that by giving it up, she will have no contingency gas herself. The surface was still a good swim away. Very reluctantly, she handed over her bottle. Momentarily distracted by her thoughts, she floated to the cave’s ceiling and took a minute to recover, which held the team’s progress to the surface still further. Stress levels in all three team members was now peaking. None of them was comfortable.

They were in fact, more small failure, one additional glitch away from a total melt-down. A surprisingly short while later, Diver A – who had been thinking for the past several minutes, what would happen if he got a bottle with a dodgy regulator or had a free-flow, and whose respiration rate had understandably elevated – once again was down to seeds and stems. This time in his second bailout. He turned to Diver C. Diver C had been thinking about this hand-off for a while. He was VERY uncomfortable donating his gas… however, he did so. Several minutes later, the team arrived in the cavern area. Diver A had barely sufficient gas to conduct a safety stop, but did so. Just as the team left the overhead, his regulator began to breath very, very hard.

On shore, while shucking their gear, the group was uncharacteristically silent, each with their own thoughts. What do you think the outcome of this incident was:

  1. This group did not cave dive together ever again
  2. This group rethought their bailout strategy
  3. This group  continued to dive team bailout

Save

Don’t even think about asking for an overfill in your aluminum cylinder…

LongO'THREE

I don’t trust the integrity of aluminum scuba cylinders… at least, not enough to:

  • overfill any aluminum cylinder (in fact I often under-fill aluminum stages and decompression bottles keeping below the manufacturer’s suggestions for working pressure);
  • keep them in service more than a year or two after their first hydrostatic test cycle (which is every five years where I live);
  • wander very far from a very conservative approach to the frequency of formal visual inspections, choosing instead to follow the manufacturer’s suggestions for cylinders in Heavy Service;
  • miss Eddy Current testing as part of the VIP procedure (EVEN WITH BRAND NEW CYLINDERS!);
  • be trusting of loners and rentals, especially those with the look of being in service since, and taking direct hits during, the Gulf War.

My reasons for being a “mother hen” are based on a professional ‘cover everybody’s arse’ strategy to risk management. And a certain knowledge that high-pressure vessels have an enormous potential to harm. I’ve witnessed the aftermath of two separate aluminum tank failures and have a very strong mental image of the chaos each caused. I read somewhere that the amount of energy stored in a “recreational scuba cylinder,” which one can take to mean an aluminum 80, is about the same as two WWII British military hand grenades. A sobering thought.

Of course, one should be equally cautious with steel cylinders, which have a similarly dangerous potential. However, aluminum cylinders more easily carry the scars of mild to moderate abuse in typical everyday service. Couple this with their inherently different reaction to repeated filling and emptying – aluminum’s fatigue limit – and the dramatic reduction of an aluminum cylinder’s endurance limit from several hundred thousand fills to perhaps hundreds when it is over-filled – and its potential for failure is increased.

Of course, an easy out would be to avoid using aluminum cylinders altogether, but the buoyancy characteristics of aluminum makes 80s and 40s excellent stages, bailout, and decompression bottles. Besides, avoiding their use would be a dramatic over-reaction.

Working within manufacturer’s limits and the handling guidelines they supply us, aluminum is safe for many, many more fills than any of us is likely to ask it to endure.

But we do need to be mindful of those limits and guidelines.

Luxfer, the manufacturer of a popular brand of aluminum scuba cylinders of all sizes including the ubiquitous aluminum 80 writes the following about safety and its products… all great advice!

“If the cylinder is used in heavy service then it should be inspected every four months.

“Heavy service” means any one or more of the following:

  • Cylinders being filled or “topped off” five or more times per week;
  • Rental cylinders in use during the ‘season’ and ‘off-season’ times;
  • Cylinders used wherever damage is more likely than in normal use or where the
  • care and/or maintenance is slightly below recommended care.

If the cylinder is known to have had any unusual treatment or condition, it should be immediately visually inspected, prior to its next use.

“Unusual treatment or condition” means if the cylinder:

  • Dropped, fell, was struck, was in an accident, or when the care and maintenance of the cylinder is obviously poor;
  • Was stored improperly, and shows signs of damage;
  • Has obvious corrosion since the last visual inspection;
  • Has a gouge, dent, scrape, cut, dig or, in any way, has been damaged since the last
  • visual inspection;
  • Was stored with water, material or matter inside the cylinder;
  • Shows signs of exposure to fire or high heat, including any one or more of the
  • following:
    • Charring or blistering of the paint or other protective coating;
    • Melting or charring of the metal;
    • Distortion of the cylinder and/or any cylinder accessory;
    • Melting of fuse plugs, valve handwheel, valve protector, and/or any other
  • valve component or cylinder accessory;
  • Has been partially or fully repainted or treated to hide damage and/or
  • fire damage;
  • Is known or suspected to be leaking; or,
  • Is known or suspected of having a crack.”

 

Dive Safe… be careful out there.

Save

Save

Save

Save

Save

Save

Save

Fixing a lack of skill with complex gear… Nah, try a swimming pool!

Nick Hollis in SMS75 Hollis SM harness

Nick Hollis of Hollis Gear showing some skills in swimming pool like conditions…

Few of us learned to dive without the help of a buoyancy device of some sort. Not to say that wearing a jacket-style BCD, sidemount harness, or backplate and wing automatically gave any of us pin-point control over our position in the water column: it certainly did not!

The vast majority of the divers — sport, technical, rebreather, open-circuit, whatever — earned that particular skill with patience, perhaps a little help from a buddy or mentor of some description, and a bunch of practice.

Swimming pools or ‘swimming pool-like conditions’ (warmish, reasonably calm, clear-ish, current-free shallow water), are awesome for gaining something approaching buoyancy control right from the first open-water class: and then fine-tuning that skill by return visits as often as practical. I will still take time, whenever I can, to simply “hang about” in the water. A visit to the pool is a great place to test new gear, adjust weighting, check that old favorites still work the way you want them to.

In fact, if you are an instructor looking for ways to increase student comfort, add to general diver safety, and build on the basic skills your students learn on your courses, you’d do well to offer a few extra hours of pool time regularly. I have a buddy whose open-water students leave her classes with demo-quality buoyancy control and near-perfect ‘cave trim.’ Her secret is additional pool time, which her students gladly pay a little extra for because she’s taken the trouble to explain the benefits of buoyancy control to them. They get it: they know it takes a bit of work: and they are not looking for a fast fix.

So, imagine my disappointment to see an ad for a piece of kit that is such a convoluted bunch of “Heath Robinson” engineering that at first I thought it a joke. The product, and it is real apparently, is pitched as: “An industry standard premium diving jacket, dive computer with connecting links to allow the computer and jacket to manage diving processes according to the selected settings just like an aircraft autopilot.”

What have we come to when the simplest of devices, and a little practice to master its use, has to be replaced by something with Catastrophic Failure (or something else with the initials C-F) written all over it.

Please, if you want to get your buoyancy squared away because it wasn’t taught to you as a beginner, take a cavern or intro-to-tech class from a good instructor. Contraptions that offer instant mastery through technology are like magic pills that promise to shed pounds of belly fat without diets or exercise. The word to describe this type of promise is bullshit.

Save

Want to ignore the rules? Then do this…

There really are no scuba police, and here in most of North America at least, government bodies give the diving community the closest thing to a free-rein. We can, in essence, do exactly as we please. We can dive without training, ignore warning signs, flaunt best practice, exceed both whatever certification we have and the experience earned on previous outings. We are free agents. Great stuff.

But the downside is awful. A couple of days ago, I read of another stupid death — highly preventable and caused by several breakdowns in the system… that tragic alignment of holes in the safety net that which is in place to help diving “accidents” NOT happen.

What’s frustrating about many of the deaths we read about online, in diving magazines, and in diving forums, is that the people involved had been warned. At some point, either in their training or general involvement with the diving community at large, they had been told what they had planned, was foolhardy or against best practice.

But they went ahead anyway.

Just as sad is that their behavior does have the potential to change the status quo. Their silliness may create a situation where some agency or quasi-government entity starts to pay attention to our activities… and arbitrarily start to shut things down.

I am reminded of something my mate, Wayland Rhys Morgen suggested for anyone who is about to — either figuratively or actually — hand their beer to someone and say: “Here, watch this…”

The next time you intend to deviate from best practice, take a piece of note paper and divide it into two columns. Write in block letters at the top of the left-hand column: “What people usually do.” On the right, also in block letters, write: “What I am going to do instead.” Then in the appropriate column write clear, concise language an explanation of each behavior associated with your planned dive. So, these ‘behaviors’ would cover things like analyzing and labeling gas cylinders, limiting depth and duration according to your training, recent experience, and the vagaries of the environment… stuff like that. Read it back to yourself — both columns — then sign and date it. Then give it for safekeeping to someone you trust: lover, spouse, son, daughter, best buddy, favorite cowgirl. It really does not matter much to whom, just hand it over. Tell them to give it to the people or agency that leads the inquiry should something bad happen to you on your adventure.

Building the odds in favor of a good outcome…

LongO'THREE

A simple tip from the closest thing you’ll find to an expert

I have one of the best jobs imaginable… I get to dive for a living. It has drawbacks just like any job… I spend a lot of time away from home and the people I love; sometimes I am compelled to jump into the water when all I really want to do is sit on my arse and veg out; and there are few constants in a very fluid and organic field of research about diving, which means lots of reading, lots of lectures, lots of changes in what we teach and what we reject.

However, there are also a bunch of positives… including the list of things on the drawback list: I travel, I dive a lot, I get to feed my brain new stuff all the time.

One of the best things though is the people I meet. The so-called technical diving community is packed with cool folks. These are the men and women with open minds, boundless curiosity, and a willingness to share what they’ve discovered. They are stellar human beings and it’s a gas to hang out with them, and learn from them.

One guy who always has something interesting to say is Dr. Neal Pollock. Neal is ex-pat Canadian scientist. He’s a research physiologist working in the States, and has a background in zoology, exercise physiology and environmental physiology. He is also a diver and part of his research relates to decompression stress.

He also has a very “English” sense of understated humor in his writing and presentation style which appeals to me. I particularly appreciate lines such as: “The approximation of decompression status predicted by current deterministic algorithms should not be confused with ‘truth.'” Honest, insightful, and funny.

Anyhow, his latest blog is a hugely interesting read. It’s entitled “Flexible Control of Decompression Stress” and you’ll find it here: https://www.shearwater.com/news/flexible-control-of-decompression-stress/

Take the time to visit and read. You’ll learn something.

Surviving the Rottweilers

LongO'THREESeven tips to help protect you when things go wonky underwater

You may have read somewhere that underwater emergencies are rare. I’m not so sure that rare is the best way to describe them.

While underwater incidents causing bodily harm or death may be infrequent, close encounters with potential disaster are frightenly common. Spend a week or so at a dive resort or on a live-aboard, and you’re guaranteed to hear stories that support this view. “I ran out of air,” “we got separated from the guide and had no idea where the boat was,” “We ended up way deeper than expected,” “My computer went into deco and I had no idea what to do,” “My regulator started to spew bubbles and I panicked… I did not know what to do,” “We skipped our safety stop,” “I felt odd and confused, but managed to hit the inflate button and shot to the surface,” “I signalled the divemaster but he misunderstood me and continued with the dive.”

‘Victims’ of these little brushes with catastrophe fall into three categories. Some give up diving altogether. They get the crap scared out of them and opt for golf, fishing, stamp-collecting. No foul.
Some learn from the experience and avoid the traps that painted them in a corner in the first place, and they become more informed and safer divers.

And some learn nothing. They carry with them the potential to make similar mistakes again and again… sometimes with ruinous consequences.

Here are seven strategies that may help divers enjoy their diving, and avoid becoming a statistic.

      1) Learn to say no! Too many new divers are fooled into believing that it’s OK to do trust-me dives with a dive guide or divemaster. They may have a good sense that diving once or twice a year does not prepare them for a 40 metre-plus dive (that’s 130 feet or more), in current, with rented gear, but a divemaster, instructor, sales-person talks them into doing it. This is dangerous bullshit. No agency condones this type of practice, but it is common in many dive resorts, and needs to be stamped out.

 

      2) Learn your limits and stick to them. There is nothing wrong with pushing yourself to learn and grow your diving experience and comfort zone, but be realistic about your starting point. Being an occasional diver means you start from zero at the beginning of every dive trip. Scuba skills are perishable. Even experienced cave instructors take the time to “brush up their skills” if they have been out of the water for a while.

 

      Even if you are lucky enough to dive every week, understand that your experience, training and gear limits the types of dives that you can safely undertake. Listen to your inner wimp.

 

      3) Learn self-reliance. Too many “rescues” end up in disaster or near disaster for all participants. Get training, learn what kit to wear to help deal with gas emergencies, PRACTICE. Most of all, STOP, THINK, ACT, REASSESS.

 

      4) Maintain your kit, and use a checklist when you assemble it and when you inspect it prior to EVERY dive. Equipment problems are the easiest underwater emergencies to avoid. Don’t fall into the trap of believing that something is good enough… if it “ain’t perfect” don’t dive with it.

 

      5) Plan your dive… Dive your plan. Understand the risks, make sure everyone is capable of doing the dive, and ensure everyone have the skill and kit to deal with contingencies should they arise.

 

      6) Be aware! The best way to deal with a diving emergency is to stop it before it gets out of hand. The vast majority of diving emergencies begin as small inconveniences that cascade rather like dominos falling over. Keep an eye on your buddy(ies), be aware of changes in the conditions, monitor yourself. The best blanket advice is to take things slowly.

 

        7) Have an escape strategy. When something goes pear-shaped, the top priority is to make sure everyone has something to breathe… next is to get yourself and your mates as far away from the spinning fans as possible. Cave divers talk about always having a continuous guideline to the surface. Sport divers can take a lesson from that: Always know the location of a safe, protected exit… in other words, someplace where you can surface and be found or find your way to your entry point.

Steve Lewis is an explorer and experienced cave diver, who has been teaching technical diving programs for more than 20 years. He writes and lectures on topics related to diver safety in North America, Europe and Asia.

Setting Limits for cave diving: How much bailout gas should a CCR cave diver carry… and where?

Closed-Circuit Rebreathers (CCRs) are complex. Fewer moving parts than a Formula One car, and less mind-boggling than a Heath Robinson machine, but as mysterious and confusing as both to some folks.

Here’s one thing that certainly doesn’t help. When open-circuit scuba goes pear-shaped, the situation usually announces itself with gusto. Events such as a high-pressure seat failure, an o-ring giving up the ghost, a hose failing, or a manifold or burst-disk leaking, make themselves known immediately. Divers spend a huge percentage of the time during any technical training program, rehearsing a variety of valve shutdowns, regulator switches, and one or more options intended to deal with this type of failure, preserve what gas they can, and get their backsides out and to the surface with the least fuss possible.

By contrast, a CCR is not only quieter than open-circuit in normal operation, a whole category of failures arrive unannounced and quietly too. Certainly CCRs are still prone to many of the issues that plague their bubble-making dive buddies. Ruptured hoses, extruded orings, faulty handwheels, and free-flowing first stages are all possible. But in addition, there’s a whole category of sly, furtive malfunctions unique to closed-circuit diving; and each of these has the potential to cause real harm.

The default and simplest solution is to “bailout to open-circuit.” In other words, stop using the rebreather and switch to breathing from open-circuit gear to get back to the surface as rapidly as circumstances allow.

Advanced training for CCR divers puts strong emphasis on keeping the diver in CCR mode for as long as safety allows, and only bailing out as the primary option for scenarios like catastrophic loop failures or full floods, widely divergent oxygen cell readings, carbon-dioxide breakthrough, mechanical damage to primary components, etc. Cave CCR students, for example, are expected to consider all the options available to them in the event of a system failure – real or simulated. A full-cave CCR course is an exercise in complex navigation, and disaster scenario management. However, for the sake of overall safety, CCR cavers are also encouraged to bailout to open circuit if they have doubt about what needs fixing and how best to do so.

A useful phrase worth remembering is: THERE’S NO SHAME IN BAILING OUT!

Of course, as with most pieces of advice about diving, particularly cave diving, and more specifically about diving a CCR in a cave, there is a limitation. There’s no shame in bailing out… provided you have more gas then you need to get back to dryland in one piece.

And this begs the question: How much bailout gas is enough?

Calculating the answer to this is simply a question of using average depth (expressed in bar or ata), and multiplying that number by how much time it will take to get back to open water. In addition, one is advised to factor in some contingency volume for heightened gas consumption due to stress, hypercapnia, and so on. One suggestion is to work with a basic SAC rate of 30 litres / one cubic foot per minute. So using this baseline for a cave with an average depth of 20 metres / about 65 feet / 3 bar or ata, the bailout consumption rate would be 3 X 30 litres or 3 X 1 cubic feet per minute.

This calculation suggests an 80 cubic-foot cylinder (11 L charged to 200-210 bar)  would last approximately 25 minutes. Penetrations therefore would be no deeper than a 25 minute swim to the exit… where one might normally stage a small cylinder of decompression gas: usually pure oxygen.

Some divers use a slightly more conservative baseline, some slightly more aggressive. Some calculate a slightly lower consumption rate after the first 10 minutes on bailout, on the understanding that a diver will begin to regain control of his or her breathing after that time.

Another approach is the “one-hour rule.” Following this guideline, divers each plan to surface with one hour of all consumables in reserve, which includes lights, oxygen and diluent gases, scrubber, and bailout.

Whichever guideline one opts to use, the strong recommendation is to backup any seat-of-the-pants calculations by conducting simulated bailouts from various points in caves one dives regularly. These actual real-world data – with an added factor for stress – can then be inserted in calculations to arrive at a more accurate estimate.

Once one has an idea of how much bailout gas is enough, the next decision is how to carry it. Options include, about one’s person, shared among team members, drop-staged at various points in the cave.

The NSS-CDS, one of the original cave diving training agencies, suggests a dive team carries 1.5 times the volume of gas required to get a single diver out of the cave. Therefore, in the example above and a three-person team, each member would carry a fully charged 40-cubic foot bottle.

The logic behind “team bailout” is that there is, for the diver with a gas emergency, a greater level of conservatism than the acceptable norm for open-circuit cave divers. It does however demand that team stays in contact, swap tanks during their exit, and that only one unit has a problem that requires bailout.

Except in exceptional circumstances – with seasoned team members and when the basic bailout scenarios are inappropriate or impractical – I choose to carry on my person, enough gas to swim out of the cave on my own. Depending on the unit I am diving, I find that carrying two, 80-cubic foot sidemount cylinders is easy, comfortable, streamlined, and allows for plenty of time to exit from the vast majority of tourist cave dives. On occasion, for “smaller” dives or shallower profiles, I’ll strap on smaller aluminum tanks for bailout. If a dive requires a bailout volume approaching my normal carried volume, or a greater safety margin, I’ll drop stage bailout gas and/or work out a kind of hybrid personal-carry-team-dropped-stage strategy.

More than any other factor, one should be aware of the elevated gas consumption that typically follows an incident that demanded coming “off the loop” (bailing out). One also has to consider, especially if open-circuit diving is no longer part of your regular dive menu, typical consumption rates for a CCR diver using OC gear are often higher than expected. Something to do with the sudden shock of breathing cold, dry air I suspect.

In any event, remember to always have something appropriate to breathe, and plenty of it. You will never regret carrying more gas than you need.

Do some CCR training standards need to be revisited?

Lucky enough to have the option, and sometimes I use open-circuit technology because it better suits the environment and situation, but I think of myself as a rebreather diver.

Also, I count myself as lucky to be a rebreather instructor. I enjoy teaching something a little more complex, technically challenging, and arguably a wee bit more cerebral than basic open-water classes. However, I have issues with a couple of things that standards require me to incorporate into CCR training.

Let’s start with recommendations for the flavor of diluent in TDI’s first level of mixed gas training. (FYI: this is the program with a depth limit of 60 metres… that’s 200 feet American.)

The course standards require the diver’s diluent cylinder to contain 16 percent oxygen or more. At first blush this seems sensible. After all, a gas containing 16 percent or more oxygen can be breathed on the surface without ill effect… but only in open-circuit mode… and only in the majority of circumstances, not all.

Someone unfamiliar with rebreather diving, therefore (a trial juror for example), could be easily convinced that even if the rebreather was unable to add supplemental oxygen to bring the partial pressure up to a healthier range – either because of a malfunctioning oxygen solenoid or depleted oxygen supply cylinder – the diver would be “OK” to surface and get out of the water. A 16 percent oxygen mix would be, then, a good choice to breathe in these circumstances.

However, it is not. Few CCR instructors promote this option. Most – me included – would promote coming off the loop and breathing bailout gas (decompression bailout gas for example), long before surfacing.

In essence, the fact that the diluent is breathable on the surface in very limited and sub-optimal circumstances has little bearing on risk management.

One might argue that such a gas is potentially dangerous. And the truth is that breathing a trimix diluent, any diluent even air, on a malfunctioning unit or with an empty oxygen supply cylinder on the surface or close to the surface on a rebreather is a poor choice. It would be a crap shoot anyplace shallower than say 21 metres (about 70 feet American). In my opinion, the risk of hypoxia – and other complications – is too great at that depth or shallower. Best option is to bailout to open-circuit deco mix. Easier. More likely to have a happy ending.

So, would I like to have standards suggest the oxygen content of the diluent bottle be increased? No, just the opposite.

The issue has nothing to do with what can be breathed on the surface. This is a red-herring in my opinion. With a functioning unit, the oxygen content of the gas within the diver’s breathing loop at the surface (the oxygen set-point) will be maintained at something like the equivalent of breathing EAN70. If the unit cannot do that, the diver is best advised to bailout to open-circuit gas… OFF-BOARD OPEN CIRCUIT NOT DILUENT.

So, the diluent on the surface issue is not an issue at all. What is an issue is what happens at depth.

The procedure of emptying the contents of a rebreather’s breathing loop and replacing it with diluent, is called, unsurprisingly, a diluent flush. It serves a couple of functions, each with a specific benefit.

Let’s look at number one function of a diluent flush. Doing so, replaces the gas being breathed with a known entity with a predictable oxygen partial pressure. That oxygen pressure is derived by multiplying the fraction of oxygen in the diluent by the ambient pressure expressed in bar or ata. So for air diluent at 30 metres the solution is approximately 0.20 X 4, which equals 0.8. And that’s what you’d be breathing after a complete flush on air, at 30 metres (100 feet). And, importantly, that is what you’d expect the readout on the unit’s PPO2 display to show you.

Reassuring when this happens. Even more so because you can then watch each oxygen sensor’s behavior as the unit starts to add oxygen to bring the loop gas up to its intended set-point (let’s say for example’s sake, an oxygen partial pressure of 1.3 bar). The speed at which the sensors respond and refresh a gradually rising PO2, and the uniformity of their display can indicate everything is functioning as it should… or that there are problems.

Now, let’s imagine we are diving at 60 metres using a diluent containing 16 percent oxygen. The ambient pressure at 60 metres is 7 bar/ata, therefore a quick diluent flush will return a partial pressure of approximately 7 X 0.16, which is 1.1 – 1.2 bar. If you were running a set-point of 1.3 bar or 1.2 bar (both are possible and common choices), a diluent flush would tell you bugger all. A diluent flush would not appreciably change the oxygen partial pressure.

In my opinion, diving to 60 metres on a diluent containing 16 percent oxygen is not the best option… actually, it’s a rather poor option, and one I am reluctant to recommend. I believe doing so takes away a valuable, vital real-time test of oxygen cell function.

Here’s my point. While 16 percent oxygen may support life when breathed open-circuit on the surface, the likelihood of a CCR diver opting to do so, is remote… perhaps a very last resort… if that. Whereas executing a diluent-flush at depth to check on oxygen cell behavior is something one might do several times during a dive.

I’m all for managing risk, and having your backside covered should the Rottweilers hit the fan, but I don’t believe TDI’s suggestion of the “correct” diluent for 60-metres dives does so… it is simply too oxygen rich. Why not suggest a 10/50 diluent on all CCR dives to 80 metres and above? It’s easy to mix and is the default diluent gas sold to divers in many, many of the dive shops I use.

At 60 metres (7 atmospheres, 200 feet), a partial diluent flush with a 10/50 returns readings of around 0.7 bar, which gives one the widest scope possible for watching oxygen cell behavior.

Continue reading

The “weighting test:” are technical divers absolved for some reason I don’t know about?

When you first learned to dive, I’d bet dollars to doughnuts that your instructor explained a simple trick to help you check how much lead you should carry. It went something like this:

  • The diver enters water (at least 3-4 metres deep) with gear in place and a regulator in her mouth, with her cylinder almost empty (SPG reading perhaps 50 bar/500 psi)
  • She inhales and holds a full breath then vents all the air from her buoyancy device.
  • She hangs motionless… Quiet hands and feet
  • If correctly weighted, after 30 seconds or so, she will settle in the water and float at eye level, half her mask window below the water, half above
  • She exhales and slowly sinks

What is not commonly taught is that this test can be completed with a full tank also. The only difference being that the diver should add enough ballast after the test to compensate for the weight of gas that she will use during the dive… the aptly named buoyancy shift… otherwise she will be too “floaty” to hold a safety stop at the end of her dive.

Your first instructor may also have explained exactly why carrying too much lead is a recipe for a miserable dive. Achieving good trim, buoyancy control, presenting a streamlined angle of attack to the water, and in-water comfort can be difficult for new divers but more so when he or she is over-weighted. Hence the value of doing a weighting test: it is definitely time and effort well spent.

Of course, an alarming percentage of divers all but ignore the lessons taught by the test and dive with “a little extra lead just to be safe.” God only knows what that’s supposed to mean, but it happens too often.

Now just in case you consider yourself a technical diver and are reading this thinking: “Bloody sport divers… always getting it wrong;” I believe that the worst offenders in the over-weighting challenge are technical divers. That’s right buddy, you and me.

The Balanced System Misunderstanding
The term “balanced system” actually describes three important aspects of gear selection and configuration. The first is the outcome of the balancing act between buoyancy and gravity, and whether the diver and the gear she takes into the water floats or sinks when it’s all put together. (Simplified to does it float or does it sink.) Secondly, the weight of ballast that could be ditched should the Rottweilers hit the fan and the diver has to swim for the surface without a primary buoyancy aid. (For a sport diver this ditchable weight is usually his/her weight belt; and for a technical diver, it might be stage bottles etc.). Thirdly, where the ballast should be located or carried since this will affect the diver’s trim and issues with the angle of attack as he or she moves through the water.

For a technical diver, understanding and addressing all three is necessary — just as it is with his or her sport-diver buddy — but the nuances of all three issues are more complex to calculate and more finicky to arrange for anyone engaged in tech diving profiles.

You may have read before in various onLine postings and perhaps textbooks that “a balanced system is one that a diver should be able to swim to the surface even with a failed [primary buoyancy cell].”

The ability to get themselves and as much of their life-support system back to the surface is certainly something technical divers should strive to achieve, but without any actually thought, calculations or in-water testing, it really cannot be assumed. Many do.

For example, the buoyancy characteristics of most sets of traditional North Florida Cave Rigs (steel backplate-mounted and manifolded doubles) means most would have a hard time to qualify as balanced at the beginning of a dive when fully-charged with gas.

For many technical divers, their backmounted doubles (and the gas they contain) constitute the vast bulk of the ballast they carry. So in effect, they often carry very, very little ditchable weight… if any. If they are over-weighted, they have nothing to ditch. In an emergency, swimming a set of steel doubles up to a safety stop and holding position in the water column for even a few minutes would be close to impossible and certainly stressful for these people.

Luckily, primary buoyancy cell failures are rare, but even so, divers who opt for steel doubles need to be aware of the potential challenges their kit presents them with… you can’t take off one tank and swim the other one to the surface when wearing twin cylinders!

Sidemount users have things slightly easier because they can unclip one primary bottle, dump it, and surface while breathing from the second. But their systems present challenges too. Rebreather divers also have a special balanced rig paradox to sort out if they happen to have a “dramatic moment” at depth.

Weight Changes During Your Dive
As a diver, especially a technical diver or one who aspires to become one, and contrary to the assumptions made by the Ideal Gas Law, we need to understand that gas has mass. For non-scientific applications this means gas weighs something and as it is consumed during a dive, the drop in gas weight is what contributes to buoyancy shift.

I don’t usually speak American Standard Units, but you might and if you do, you should take note. A cubic foot of air weighs approximately 0.0807 pounds. Perhaps more useful is that 13 cubic feet of air equals about one pound. Therefore, a diver carrying a couple of 130 cubic-foot steel cylinders, who has consumed just half of a full air fill during her dive, will be approximately 10 pounds lighter than when she started!

For the rest of the world, one thousand litres of air – assuming standard content, pressure, and a temperature of 0 degrees – will weigh around 1.29 kilos… slightly less at higher temperatures. So, a diver starting her dive wearing two 10-litre cylinders charged to 230 bar is carrying a little less than six kilos of gas with her!

Another thing that may affect weighting is the type of thermal protection being worn. For instance wetsuits compress and the lift they provide will decrease as depth increases. Drysuits and what’s inside them providing insulation, also compress at depth and provide less lift.

So… Let’s Determine How Much Ballast
The first step of the weighting test for a technical diver is similar to the one used by sport divers.

Work in a spot where there is sufficient depth to submerge but not a wall dropping to trimix depths. The six-meter / 20 –foot platform at your local quarry should be perfect. This is your test zone.

With minimal gas in your cylinders (a little less than one-third of their working, rated volume), no gas in your buoyancy cell, just enough gas in your suit to be comfortable (assuming you are wearing a drysuit), check to make sure you are able to maintain eye-level surface float with your lungs full. Exhale, and you should begin to sink slowly. This is the balance between buoyancy and gravity that you should aim for.

If you cannot sink, your rig is under-weighted. If you cannot float without adding gas to your buoyancy cell or suit, it is over-weighted.

Step two is a little more complicated.

Below where you completed step one, perhaps on that platform at six metres / 20 feet, have a collection of small lead weights that equal the weight of the gas that is “missing” from the cylinders you wore in step one. Use a handful of small weights… one kilo or less each. Have enough to make up the weight of a full fill and perhaps a little more. Use the 1000 litres weighs one and a quarter kilos, 13 cubic feet is one pound guideline.

Now descend to the platform, check your gas volume… now’s not the time to run out of something to breathe. Pick up all the weights, put them in a pouch, in a pocket, in a mesh bag, whichever works for you, and kick for the surface. Remember, no gas in the buoyancy cell. You CAN put a little in your suit, but don’t overdo it. The test is to calculate a balanced rig not to cheat.

This additional weight simulates your in-water weight at the beginning of a dive. If you can make it back to the surface, great. If not, relax, sink back to the platform and take out one small weight at a time until you CAN make it to the surface. Take note of by how much you were over-weighted when you initially tried to make it to the surface. Note how much lead you dropped before you were able to swim up.

You might say that whatever weight that is, represents how many litres or cubic feet you would have to breathe or dump to get back to the surface should something bad happen at depth. Not a terrific situation.

Frankly, being over-weighted by ANY amount has the potential to be life-ending. It’s certainly not smart. You may need to adjust your kit configuration. Use an aluminum rather than a steel backplate, get smaller cylindersor ones with different buoyancy characteristics.

Cut out as much excess non-ditchable ballast as you can. If you need lead to achieve balance in step one of the weighting test, make sure it can be ditched. I see a lot of divers adding V-Weights between their backplates and tanks… you do the math.

Stages and Decompression Bottles
When you carry out steps one and two of the weighting test outlined above, don’t wear stages or other bottles. These are ditchable and can be dumped in an emergency when a dive is first starting and your rig is at its heaviest. However, DO consider that aluminum stages and deco bottles (the type preferred by the majority of technical divers), have strange buoyancy characteristics and may float when empty or near empty. Factor this into any considerations for holding a safety stop.

In other words, should you have a problem with your buoyancy cell and are too heavy, hand off any negative bottles to your buddy. If they are empty, too positive, and you believe they may prevent you holding a stop at the end of your dive, you can dump them because they will probably float to the surface.

Rebreathers and Bailout Bottles
Rebreathers divers use very little gas during a diveusually just a couple of hundred litres, perhaps 10 cubic feet… therefore, their gear’s buoyancy shift is minimal. However, they carry bailout bottles. These may stay untapped for months. Only issue might be that on the one dive where they have to be used, the diver will ascend with less weight than “usual,” since they’ve been breathing open-circuit since they came off the loop. Because of this, the suggestion is to do a weighting check simulating a safety stop with one or two spend bailout bottles strapped to you.

Conclusion
Making the effort to get your weighting will increase your comfort and you will be in a much better position to handle emergencies, like wing failures and other problems. Cutting excess weight will make it easier for you to control your buoyancy, and you will not be wasting as much gas continually filling and dumping your buoyancy cell during the dive.

You may also derive some benefit from buying a digital fish scale. You can use it to measure the in-water weight of various accessories such as stage bottles, cameras, lights, reels and the like. Simply zero out the scale, lower the accessory into the water, hook the digital scale to it and it will display its weight. Cool too if you want to calculate an object’s volume!!

Remember also that you need recalculate your weighting when you change something in your configuration like tanks, primary lights, regs or drysuit underwear.

Have fun and dive properly weighted.

Flying after diving… what are the guidelines?

Here’s a somewhat common scenario… perhaps one you have experienced yourself; or thought about at least.

Anyhow, here it is. You and your buddy are on a dive vacation someplace that requires airline travel… bummer, right!? Pack light. Hope the TSA doesn’t break anything on your way out. Hope customs at the destination doesn’t fuss over anything on the way in.

However, all those issues aside, every other piece of the planning puzzle is falling into place just fine except for one small issue. The flight home is scheduled wheels-up at O-Dark-Hundred in the morning, and there is an opportunity to dive something really, really cool the previous afternoon… late in the afternoon. The question is: Can you do that dive without getting bent like a pretzel on the flight home less than 12 hours later?

The whole issue of Pre-flight Surface Interval (PFSI) is a contentious one. The old-school guidelines were wait 24 hours after diving before jumping on a commercial flight. But that recommendation has been revisited in more recent studies and the PFSI shortened; with suggestions that various other factors such as breathing nitrox, the length of safety stops, gas breathed during safety stops, and the duration and depth of dive, can all influence by just how much the PFSI can be shortened.

A quick straw-poll of my dive buddies tells me that the definitive answer is a moving target. There is little agreement.

What we can take as read is that flying after diving has a strong potential to apply extra decompression stress on a diver and increases their risks of decompression sickness. There seems to be a direct relationship between the risk dropping and the amount of time spent out of the water increases allowing excess inert gas to be eliminated normally and harmlessly through the lungs. Some trials have estimated the PFSI necessary for a low DCS risk (read acceptable number of incidents of DCS) after relatively long single or repetitive no-decompression dive profiles sits between 11 and 16 hours.

The PFSI for dives requiring staged decompression stops, was around 22 hours. At first blush then, a 24-hour break after diving would seem in most sport-diving cases to be very conservative. But then again, what worked in a dry chamber on a couple of hundred test subjects, may not apply to the average dive tourist coming home from a week in paradise where the diving was punctuated with rum, grilled fish and late-night romps on the beach. Equally, it also may not apply to an informed technical diver who pads her/his decompression stops with extra time, and breathes pure oxygen for long periods during that PFSI!

Well worth the download and reading time is: The Influence of bottom time on preflight surface intervals before flying after diving, published by Undersea Hyperb Med. And authored by Vann RD, Pollock NW, Freiberger JJ, Natoli MJ, DeNoble PJ, Pieper CF. (2007). It is available from the ultimate diver’s research tool: http://archive.rubicon-foundation.org/xmlui/handle/123456789/7343.

The study’s conclusion suggests “that bottom time, repetitive diving, and a decompression stop may significantly influence the pre-flight surface intervals required for low DCS risk. Moreover, it highlighted the need for additional human trials to resolve the effects of exercise and immersion on DCS risk during flying after diving. Such information might assist in the calibration of dry, resting trials for the effects of immersion and exercise which would be useful as dry, resting trials are less expensive and faster to conduct because more subjects can be exposed per chamber dive. This might be of aid for improving the accuracy of existing flying after diving guidelines.”

Significant in that conclusion is the call for additional human trials to resolve the effects of exercise and immersion on DCS risk when flying after diving.

I volunteer.

However, I would be far from an average test subject since something seems to put me outside the bell-curve for DCS risk. For example, my experience with PFSI is far from what’s generally acceptable and my practices at times have been foolhardy. Furthermore, I fall outside the age category that most studies could ethically accept in any trial… but all that aside, I would love to be a guinea pig.

 

Normalization of Deviance

Many divers, probably most divers, accept that diving can be truly dangerous. Of course, from time-to-time you’ll probably bump into someone who tells you and, most importantly, themselves that the risks associated with diving apply only to other people and not to them, but the majority of us are supremely aware that the Rottweilers can hit the fan on any dive, at any time, and for any number of different reasons. So it seems odd that there is so little mention in diving books and student manuals of the one “behavioral fault” common to the majority of dive fatalities.

Every year, the Diver’s Alert Network releases its report on diving incidents, injuries and fatalities. This is, in my opinion, the most valuable piece of data collection and analysis done by any organization within the dive community. It makes for compelling, but somewhat depressing reading. For example, in its 2010 report, it shares with us that there were 144 scuba-related deaths reported world-wide.

If we were to summarize the factors that contribute to dive fatalities, at least those in DAN’s report, we’d find four categories.

  1. Poor health (divers being really out of shape, on meds, ignoring common sense and diving with existing ailments or injuries).
  2. Procedural errors (things like not analyzing breathing gas, diving a rebreather with dodgy oxygen cells, running out of gas, etc.).
  3. Issues with the environment (getting into trouble because of changing conditions, like currents, visibility and the like).
  4. Problems with equipment (particularly serious in the world of rebreathers, but also including situations where a piece of kit goes pear-shaped and the diver freaks out and panics).

However, it seems to me that there is a fifth to add to that list, and its influence seeps into and significantly colors each of the other four. The Normalization of Deviance describes a dangerous facet of human nature. It goes something like this: We do something that does not follow the accepted (and acceptable) rules or guidelines – for example, we skip certain steps in a “standard” procedure because it saves time. The trouble stems from the unfortunate fact that we get away with taking the shortcut. Then, believing it’s safe to make the same safety shortcut next time around, we do the same thing… we ignore safe practice, established safe practice. In the absence of things going totally pear-shaped, our deviation from normal practice and safe procedure becomes a new acceptable norm.

The term Normalization of Deviance is from Diane Vaughan’s book on the Space Shuttle disaster, In that book, The Challenger Launch Decision, Vaughan, a professor in Columbia University’s Department of Sociology, points out that the component failure that contributed to the loss of the Space Shuttle, and the deaths of seven crew members on January 28, 1986, was predicted before the launch. The risks were known and documented!

She explains that normalization of deviance within NASA and Morton-Thiokol (the company that manufactured the solid rocket boosters (SRBs) used to propel the shuttle into space), allowed a recognized design flaw to be ignored. She writes: “As [NASA and Morton-Thiokol] recurrently observed the problem with no consequence they got to the point that flying with the flaw was normal and acceptable” In essence, flight plans made no allowances for a known issue with the SRBs.

This deviation from best practice resulted in what Vaughan termed a: Predictable Surprise. Eventually, luck ran out, the component failed and the shuttle disintegrated 73 seconds after launch killing five astronauts, two payload specialists, and grounding NASA’s shuttle program for almost three years.

Normalization of deviance – and the predictable surprises that follow – are part of that catch-all phenomenon too often observed during the accident analysis that follows failure of any high-stakes, high-risk endeavor. We call that phenomenon: Human Error.

Certainly normalization of deviance shows its ugly face in diving. Often. A classic example is the double deaths of Darrin Spivey, 35, and Dillon Sanchez, 15 on Christmas Day 2013. Spivey, certified only as an open-water diver, took Sanchez, his son, who held no recognized dive training or certification at any level, to try out new equipment, Sanchez had received as a Christmas present. For that tryout dive, they visited the Eagles Nest cave system, which is situated within the boundaries of Chassahowitzka Wildlife Management Area, Florida.

Spivey and possibly Sanchez were aware that they had no business attempting such a highly technical cave dive without specific training in cave, decompression, and trimix. The Eagles Nest, also called Lost Sink, is known justifiably as a very advanced, highly technical dive. There is even a huge sign at the water’s edge proclaiming such.

And it’s no secret that such an advanced deep dive demands respect, and training, experience and planning. Especially since the top of the debris cone directly below the system’s rather tight vertical entrance is deeper than the maximum sport diving limit. Anyone wandering in there by accident, would very soon realize the magnitude of their mistake and get the hell out of dodge… well, most would.

But Spivey and Sanchez had broken the rules before and gotten away with it. The pair had, according to records and the later testimony of family and friends, dived several North Florida caves including the Nest, and walked away Scot free. Their luck held.

Like NASA and Morton-Thiokol, Spivey and Sanchez had normalized their deviant behavior, and until Christmas Day 2013, everything was fine. Their predicable surprise was that both father and son drowned.

We all take shortcuts… Certainly I have, and I am sure you have too. If we have done so with dive safety, we’ve been lucky and have gotten away with it… up until this point at any rate.

Because of the regularity of dive fatalities and the metaphorical wake-up whack on the side of the head that these accidents can deliver, stopping the normalization deviance should be a breeze for divers. It should be simple for us to stop taking safety shortcuts. But I don’t think the dive community as a whole is particularly vigilant on that score.

Dr. Petar Denoble, DAN’s research director, writes: “While each accident may be different and some of them occur in an instant, most accidents can be represented as a chain of multiple events that lead to deadly outcome. Removing any link from that chain may change the outcome.”

I’ll put myself out on a limb here and say that if the dive community, especially dive leaders such as training agencies, instructors and other dive pros, could put greater emphasis on the pratfalls and consequences associated with the normalization of deviance, it might help to lessen the unfortunate tendency of some divers to depart from established best practices… We would in essence, be removing a link that shows itself in many chains of error. And we might see diving fatalities shrink: perhaps not to nothing, but at least shrink a little.

We will never change human nature, and never eliminate human error; but we can help to create a culture of responsibility based on a realistic review of what kills divers.

I wanna make a case for unsweetened tea

If I first tell you that I’m an expat Brit, it will probably come as no surprise if I also share with you that I enjoy a cup of tea. A few shots of strong espresso in a bowl of hot milk is my morning drink, but tea is on the menu for most of the rest of the day. Perhaps less easy to fit into the ethnic stereotyping is the way I prefer my tea made. That preference is not hot with milk and sugar, but black with lemon, cold and unsweetened. And if we want to assume another level of stereotyping, you might ask yourself how I developed a taste for a drink that is a favorite in the Southern States but difficult to find most any place else, especially where I live in rural Canada.

By the way, the answer to the question above would be scuba diving. I like to drink unsweet tea anytime I can lay hands on it, but in particular I like to drink it when I am diving. Now I should also explain that I drink a lot of water when diving or otherwise. On a normal day, my water intake is around two to two and a half litres. When I am diving, I throw down at least that much. However, I also like to drink tea… probably a litre or more of it given the chance. My guess is that I “caught” the habit hanging out in North Florida’s Cave Country.

Now just in case you are reading this and saying quietly to yourself: “Guy’s an idiot. Tea is a serious diuretic and divers should steer away from it,” give me a couple more minutes.

And by the way, if you ARE thinking that, you’re not alone. I was recently on a dive boat (an excellent live-aboard working out of the Florida Keys). Always open for suggestions and customer feedback, one of the owners asked what I would change about their operations. I suggested their soda gun have a button for unsweetened tea added. She looked at me with a smile and explained that tea being “the most powerful diuretic known” I would not be seeing it on the menu for her divers anytime soon.

I resisted the temptation to argue. For example, I resisted the temptation to point out the boat’s soda offerings included: cola, and root beer; both of which have serious dietary side-effects from ingredients not to be found in tea. I also chose to not point out that there was a huge canteen of coffee on the galley counter below decks… surely if tea is diuretic, that must be too. Right? And thankfully, and most of all, I resisted the temptation to cry: “Bullshit.” Because bullshit it is.

Here are some facts about tea.

Tea is, at worst, mildly diuretic; with the emphasis on mildly. While you may poo-poo the veracity and question the bias of any study I care to cite here, data – and not some bullshit hearsay from a dubiously researched diving manual – indicates that everyday consumption of tea (hot or otherwise) does not produce a negative diuretic effect unless the amount of tea consumed at one sitting contains more than 300mg of caffeine. Since the average cuppa contains around 50mg, you’d have to drink about 1.5 litres of tea in one sitting to ingest this level of caffeine. That, my friends, would take some serious guzzling.

It may be worth noting that the British Dietetic Association has suggested tea can be used to supplement normal water consumption! Nothing there about tea being counter-indicated for good hydration… the opposite in fact. The BDA report went on to state that “the style of tea and coffee and the amounts we drink in the UK are unlikely to have a negative effect [on hydration]”. I think we are safe to apply the same logic anywhere else in the world.

A clinical study published by the British Tea Advisory Panel (admittedly a potentially biased source) stated that a cup of tea can be just as good as a glass of water at keeping your body hydrated. It explained that four to eight cups of tea consumed throughout the day, is thirst quenching “without any diuretic side-effects.” Now, I am willing to squint a little at one or two of those assumptions without adding some provisos but it’s interesting nevertheless.

In addition, the Harvard School of Public Health rates tea as one of the healthiest beverages. Tea contains essential nutrients that are being studied for their value in possibly preventing heart disease and diabetes. For instance, brewed tea is rich in free-radical fighting antioxidants.

Unsweetened ice tea is also naturally low in calories. A 16-ounce glass of unsweetened ice tea (that’s a little less than half a litre) will deliver about three calories. The same volume of cola contains about 180 calories all of which come from sugar.

Now you are free to drink whatever you want. And if I am on your boat, I will follow your rules and allow you to live by whatever odd dietary foibles you may have. But, please get something straight, unsweetened iced tea is NOT a serious diuretic and in fact may encourage divers who have an issue drinking a healthy dose of water to actually better hydrate.

Thanks for your time!

Anyone for a cuppa?

The final word from my new book…

This has been a poor year for diver deaths. I have just wrapped up a book called Staying Alive and it’s about risk management for divers… I started it because of a couple of regrettable incidents and as I finished it three months later, more deaths. The book is scheduled for launch next month from Amazon and CreateSpace. Here are my closing remarks.
_____________________________________________________

IN CLOSING
Perception of risk changes over time. The more successful we are at beating the odds, the less risky we take our behavior to be; and of course, the opposite may be true. Too often, luck reinforces bad decisions and dilutes fear, and fear is surely part of the apparatus, our personal filter, for risk management. We each must understand that because someone surfaces from a dive with a smile on their face, it does not mean they follow a good risk management process or that their behavior is not risky. It is impossible to measure a negative. Vigilance is required.

I am sitting in my office wrapping up this project. There is snow on the ground outside and I will soon have to pack and get ready to fly to Europe and go to yet another interesting and very big dive show. Perhaps I should feel happy, but I do not: I am sad.

Yesterday evening I got news that a father and son (a boy of 15 who had earned no level of scuba certification at all) had both drowned in the Eagles Nest Cave, an advanced-level North Florida system considered a challenge to certified and experienced trimix cave divers. They were, according to family, testing out new gear the kid had been given for Christmas. What on earth were they thinking: what was the father thinking as he died? Last week, two more technical divers perished. One in the Red Sea and one in the caves of Mexico. I knew them both. One much better than the other but both were nice guys; both were experienced, and unlike the father/son combination who died in a spot where neither belonged, both of last week’s victims were what one would call careful divers.

Fatal dive accidents frequently have multiple and complex, often interconnected, root causes. While each accident has unique qualities about it – in part because of the individuals involved – most accidents can be characterized as a chain of small events that lead to disaster.
This chain of events very often starts with a minor challenge – a failure in communications, a broken strap – and one event meshes with a deficiency or mistake elsewhere and triggers something even more serious, and this in turn results in escalating calamities until the house of cards has fallen down completely. To stay on top of things, technical divers need to become pretty slick at recognizing problems early, preventing a chain reaction, and thereby avoiding a one-way ride to calamity. Often something as simple as calling a dive early, before anyone gets close to the edge, can change the outcome radically and turn a potentially nasty epiphany into a positive learning experience.

Gareth Lock, who was kind enough to write the foreword for this book, is a Royal Air Force officer with a background in risk analysis and management. In his writings and presentations, he shares with us a refreshingly analytical view of dive accidents.

He and I arrive at a similar destination via quite different analytical pathways. Based on his background in the military, he uses what he calls the HFACS Dive model (pronounced H – FACS-D). His analysis and methods are based on the Human Factors Analysis and Classification System framework developed by Dr. Douglas Wiegmann and Dr. Scott Shappell of the United States Navy to identify why accidents happen and how to reduce their impact and frequency. Gareth suggests that for a dive accident to occur, several contributing factors have to align. These factors may include organizational influence, unsafe supervision, a pre-condition for unsafe acts, and unsafe acts themselves.

I believe the factors, the triggers, that lead to deaths like the recent ones in a Florida cave, the Red Sea, and Mexico are more personal, more within our grasp. The eight triggers identified back in the 1990s: Attitude, Knowledge, Training, Gas Supply, Gas Toxicity, Exposure, Equipment and Operations, provide divers with a laundry list of potential dangers.

Gareth points out with some clarity, that people ‘get away’ with diving ‘successfully’ when there are errors at every level in his HFACS model: they simply did not align that day. “And that,” he tells us. “Reinforces bad decisions and creates diver complacency.”

One has to agree with him regardless of how or why you feel divers are dying so frequently. It seems that ignoring just one of the eight risk triggers may be enough to begin a series of events that end in death: it may take two or three, and a lucky diver may get away with ignoring four or five without an incident. Life is not fair that way.

Finally, Gareth reminds us: “It is easy to blame a person, when the system is actually at fault.”
I believe too that we are sometimes too quick to blame the individual and often do not trace the mistakes made back to their “systemic” roots, but sometimes all the fault does rest with one person. The system did its best and the best is all we can expect of anything outside of a nanny state. In some instances, the buck comes to a full stop up against the victim’s attitude, their ignorance, their lack of training, their history of flaunting the rules, their willingness to gamble with the odds.

Every day you and I, indeed the whole diving community, are faced with a dilemma: error of omission or error of commission. In cases where we know someone is pushing their luck, do we mind our own business, remain quiet and watch as they hurt themselves or their dive buddies; or do we speak out? If we are part of a system that Gareth and others say needs fixing, do we have the tools to carry out the repairs? Do we even know what to fix and where to start? Can we make a difference?

There’s a kid throwing starfish back into the sea as the tide recedes. A guy walks up and asks him what he’s up to. “Saving lives,” he explains. “The tide is going out and these starfish will die on the beach, so I’m throwing them back in.” The man laughs and tells the kid that the beach is miles long and that there are hundreds, probably thousands of stranded starfish. He tells the kid he can’t save them all. The kid stops what he’s doing, looks at the guy, looks up at the sky, and back out at the ocean. He bends down, picks up another starfish and throws it as far out to sea as he can. “Saved that one!”

My hope is that through all this effort, I may just get one person to think twice before starting a dive with a faulty oxygen cell, or breathing a gas that hasn’t been analyzed, or dismissing a buddy’s suggestion that today is not a good day to go diving or taking an unqualified diver to a trimix depth cave to test new gear. Help me save a starfish.

Self-Assessment: an antidote to complacency?

Cleaning out old files and finding a copy of my original dive-plan template – something my buddies and I used for several years when we first started to do deep mix dives – I remember why we scrapped it and drew up a new one: It’s missing an important element.

If memory serves, the error was pointed out by Bret Gilliam. At that time – around 1996/97 – Bret was president of Technical Diving International (TDI) and he was gathering information for student manuals and asking members to contribute things like teaching notes, learning goals, and so on. Among the various bits and pieces I contributed was a spreadsheet template of the dive plan my buddies and I were using, and that I was also teaching students to use.

“It’s good but you’re missing something…” he told me after looking it over for a few minutes. “Something critical.”

I checked it a couple more times and to my eyes the plan looked pretty comprehensive and exhaustive. I told him I could not see what was wrong with it.

“There’s nothing in it about conducting any level of self-assessment before you jump into the water,” he said. “Don’t you think that’s worthy of a line or two?”

There is a well-established maxim that tells anyone who’s listening that complacency kills experienced divers. Checklists and Dive Plans are intended as a good first-line of defence against that sort of complacency. They are intended to counter human nature and swing attention back to things that it’s easy for divers, even very experienced ones, to take for granted and overlook. For instance, I’ve seen divers forget or simply not bother to conduct a positive/negative check after refilling a diluent bottle on their rebreather. A checklist can serve to remind someone with this level of complacency not to be a Muppet.  But, as Gilliam pointed out to me, the most complete, comprehensive and meticulous dive plan cannot prevent things going horribly wrong if the folks executing it aren’t as present-and-correct and as ready as their equipment to do the dive.

Self-assessment is now included in the pre-dive checks for all TDI and PSAI courses, but like the requirement to analyze and mark EVERY bottle of gas, or pre-breathe EVERY regulator – or any of the other listed items on a checklist or dive plan – it is entirely self-policed, and quickly becomes worthless if any one member of a dive team shortcuts that “policing operation.”

The process is simple enough. You ask yourself a couple of easy-to-answer questions and you answer them honestly. Better yet, when the dive leader has completed her self-assessment, she should check with everyone on the team to make sure they all “passed” the self-assessment check.

When we dive – even on those dives that seem like a simple bimble around in shallow water – we must ask ourselves if our plans account for any and all hazards. For the purposes of providing a realistic answer, a hazard in the case of diving is any agent or situation posing a credible level of threat to our life, health and property, those of any team member, or the environment in which we intend to dive.

When we make a self-assessment, that assessed risk includes things that are not visible or readily apparent to our buddies. One is our personal level of comfort.

To check this is the case and that our planned dive is within our comfort-zone, ask: Considering ALL the risks associated with the dive as planned, do I find them acceptable? Does the plan cope with things, events, which have some significant probability of occurrence during that dive? Rottweilers hit the fan and precisely when and how depends on circumstances that may not be predicable. Does the plan make allowance for this and am I comfortable if it does not?

Recreational divers, even those engaged in kick-ass technical dives, are under no contract and are not protected by legislation. Each of us is responsible for our safety and well-being, and – to some extent through enlightened self-interest and the tenets of friendship – with that of our buddies. Honest answers to these questions will help keep us safe and should be asked before every dive; no matter how simple and inconsequential the dive seems.

In addition, there are several other questions we might ask ourselves as part of the “self-assessment” process that should be carried out long before we pull on a drysuit. They concern personal health. We need to ask if we are comfortable with: our personal heart health; are we free from angina, epilepsy, diabetes, asthma, dehydration, and fatigue? Is our cardio and physical fitness up to the stress of the dive as planned? Do we have adequate strength to do the dive as planned? Have we learned and practiced the critical safety skills required on this dive as planned? Are we diving drunk, with a hangover or stoned? Are we physically and mentally ready to do the dive as planned and if something hits a fan while we are down there, are we ready to deal with it appropriately?

It may seem a little odd, but self-assessment should also ask: Do we believe in our buddy’s abilities and do we feel they have the skills and experience required to do the dive as planned? Are we being over-confident expecting ourselves and each member of the team to do the dive as planned? Does that hold up if we become separated? Do I feel the same should it become necessary to rescue a buddy on this dive… can I rescue them and can they rescue me?

Self-assessment does not always return a positive answer. But self-assessment is a positive habit to fall into and it needs to become part of the pre-dive preparations for EVERY dive… especially any dive that requires the use of decompression gases to manage a decompression obligation, or that takes place in a hard overhead environment.

The Rules Apply to All of Us

If you are a technical diver — a cave diver, a trimix diver, a rebreather diver, something of that sort – you have read someplace that complacency kills experienced divers. Fact is, you may have read it several times and heard it said repeatedly because that phrase is contained in most if not all technical diving textbooks. It is so commonly bandied about that for some of us, it may have become a little trite… a cliché… something to become complacent about.

Time to smarten up.

Recently, there was yet another senseless death, which might serve to illustrate the point. This one happened at Ginnie Springs in north Florida.

A young guy named Carlos Fonseca had an oxygen toxicity episode a couple of hundred metres inside the cave and died. He was breathing from a stage bottle clearly marked oxygen and later analysed to be just about pure O2. According to statements from the folks diving with him, Carlos thought he was breathing air.

Before the dive started, he was questioned about the bottle, challenged about analysing it, but insisted that he had filled it with air, even though it was labeled for dedicated oxygen service. Now he is dead.

This incident is sad and terribly tragic… a family without a dad/husband/son/brother et al… But unfortunately it is not surprising that a certified cave and trimix diver died doing a simple, run of the mill dive that was WELL within the scope of his training and experience. As slight as his experience may have been, and as rapidly as he had progressed from open-water diver to cave diver, the dive was a simple one for which he had adequate training.

Diving is an activity that requires some restraint because it is so easy to push beyond one’s capabilities… as Steve Berman once said — and I paraphrase — any twerp can get to the back of a cave. But not everyone can manage the journey back out.

I did not know Carlos… never even met him… but I do know the fella who taught him to cave dive and a couple of buddies had dived with him during the past couple of years. He had progressed from open-water punter to trimix and cave in a couple of years. He had the money, time and desire to do so.

The over-arching assessment from the people I know who knew Carlos was that he was very confident… perhaps to the point of arrogance… but so what. He was certainly enthusiastic. He had completed 100 cave dives in a couple of years, and when you live a 16-20 hour drive from the caves, 100 dives is enthusiasm in bold letters. But, in truth, he really had not been diving long, and he certainly did not have vast experience regardless of his many postings on onLine forums and Facebook, and even though he had ticked off several “big” dives in his logbook. However, I do not believe any of that had anything to do with him being dead right now.

Experience whispers strange things in our ear. I have lost many, many friends to diving, and have seen many people who I did not know personally… like Carlos Fonseca… die in the water. Part of the work I choose to do involves picking through the debris folks like Carlos leave behind. The task is to identify what went wrong and make sure others understand the circumstances surrounding the incident, the events that triggered an incorrect reaction perhaps, so that nobody makes the same bloody error. Sometimes this is difficult, but not in this case. There is no doubt about what happened; no question what triggered the victim’s death or whose actions contributed to that death. Of course, the resulting analysis may be difficult for some to accept.

A buddy of mine is a lawyer who specializes in cases where some poor bastard has died, and he tells me his staff have a kind of open pool going to see how long it is before a friend or relative says, writes or posts on the internet something along the lines: “He was the best diver in the world… I simply do not understand how a thing like this could happen…”

Someone always says that, even when the diver is a total novice… just like that kid who died in California a couple of years back trying to do an air dive to 80 metres. He was a divemaster… maybe, I forget. Anyhow, he had ZERO training to do that sort of dive but the boy’s father insisted his son was a “professional” and would not accept evidence to the contrary… or that his son had probably been lulled into complacency and hubris by his slightly more experienced and certainly older dive buddies.

In the case of Carlos, we know what went wrong and we have evidence that the victim ignored warnings from his fellow divers. He certainly ignored best practice. He is not the first diver to make such a rookie mistake, and the fact that a few years ago he knew nothing at all about diving is truly irrelevant. He DID know what SHOULD have been done. He had sat through training and certainly had correctly answered exam questions on gas management. HE CHOSE TO IGNORE WHAT HE KNEW. This is not because of lack of experience or because he progressed rapidly. He simply ignored what he knew to be the right thing to do… that’s a function of character, poor judgement, pressure or stress: take your pick.

In the final assessment, Carlos Fonseca believed the rules did not apply to him. He certainly knew that the established practice is to ANALYSE and LABEL every cylinder that goes into the water.

Is there something to learn from this incident? Of course there is. It’s the title of this piece. But there is also something else I would like to remind you of just in case someone reading this has ANY doubt. YOUR BUDDY IS CARRYING YOUR CONTINGENCY GAS… IF YOU DO NOT KNOW WHAT IT IS (first-hand, having checked for yourself) THEN YOU SHOULD. YOU may need to breathe it at some point. There can be NO credible argument against this, in my opinion.

The Best Rescue Divers Don’t Have to Rescue

It may sound strange but it’s generally accepted that the best, most successful rescue divers don’t have to actually rescue anyone because they are able to recognize signs of impending panic and are savvy enough to intervene before true panic happens.

Of course, the question most aspiring rescue divers ask at this point goes something like: “Is that a learned skill, and if so, is it difficult to learn?”

The short answer is: yes it is, and no it isn’t!

When we imagine a rescue diver in action, what flashes before our eyes – initially at least – is an image of a neoprene-clad hero(ine) pulling an unconscious diver from the raging surf… Think GQ cover meets Surfer Magazine and you’re halfway there. Then after a few nanoseconds, the real image kicks in and it’s not so pretty; not as organized; and certainly not as heroic. The truth is that a full-blown rescue, as welcome as it may be in a disastrous situation, is simply something we should strive to avoid at all costs. In essence, a good rescue is one that may consists of a quiet word before the dive and either a change in the dive plan or a retreat to the nearest café for a coffee, a Danish pastry and a chat about tomorrow’s dive rather than today’s.

One of the pre-dive skills required in every technical diving program is something labelled stress assessment. This step in the pre-dive ritual is a vital “rescue” technique, and it applies to both self-assessment as well as buddy or team assessment.

Given that you and your buddy or buddies are certified, equipped and have the experience to enjoy your planned dive without undue risk, the day-by-day stock questions you should ask yourself are: Am I up for this dive? Do I feel good about the dive conditions today? Do I feel ready to do this dive? Am I comfortable with the things that need to be done to make sure this dive is fun? And finally, how does my buddy (or buddies) feel about the dive?

This step alone – coupled with honest answers and a real understanding that there is no shame in calling a dive at any time… even before you pull on your gear – goes a long way toward making you a “successful” rescue diver.

Speaking with divers following an aborted dive — a dive where things went absolutely pear-shaped — a sobering but not surprising statistic is the large percentage of them who say: “I just knew something was going to go wrong,” or “I had a funny feeling about the dive before we suited up.”

If a rescue diver has one simple but truly important task to do at the dock, on the beach, at the dive site before the actual in-water part of the dive starts, it’s to conduct a quick survey of every diver – including herself – to check if everyone really is happy with the dive plan and feels no pressure to do the dive.

During the dive itself, even without the use of diver to diver voice communications, there are ways to keep checking that everyone is happy. What are they? Let’s review the opening statement that was used to kick this article off… “Recognize signs of impending panic, and are savvy enough to intervene before it happens.”

This form of clairvoyance – being able to tell when something is about to fall off the rails and do something about it BEFORE it happens – is not telepathy or some other psychic power, but a perfectly attainable skill called Situational Awareness, and a good rescue diver needs it.

In the most general terms, situational awareness is perhaps the most under-rated, unsung components of safe and successful diving operations.

In advanced diving discussions, we have adopted the term Situational Awareness (SA) as a sort of catch-all phrase to describe what we mean when we say: “keenly aware”; and probably for good reasons. SA has been a core concept in high-stress operating environments, such as the military and aviation, for many years.

In these milieu, SA skills support the ability of individuals to handle complex and rapidly changing situations in which informed decisions – directly relating to personal and team well-being – need to be made under tight time constraints. In these high-stress settings, lack of SA is one of the primary factors in accidents attributed to Human Error.

For the purposes of rescue divers, SA is best described as being aware of what is happening around you and your team, and understanding how the flow of events, and the actions of team members will impact your dive’s goals and objectives; both now and in the near future.

It also encompasses the skill of selecting which bits of information are relevant and which are not and can be discarded.

Put briefly, SA is the chess-player’s skill but applied in an environment where checkmate can result in real physical harm, and not just a wooden game-piece being knocked sideways.

One key sign of a buddy’s comfort level while underwater is his or her respiration rate (at least on open circuit gear). A nice relaxed breathing rhythm generally means a nice relaxed diver. Faster breath cycles may be a sign of tension, carbon dioxide build-up, overwork, and are often the first outward sign that forewarns of events that can domino into bedlam if left unattended.

I have a good idea of my normal breathing rate during a moderate dive – it’s around eight per minute and therefore somewhere south of the adult resting average of 12 to 16 breaths per minute. I self-monitor during a dive, but I also pay attention to the bubble “signatures” of the divers around me, trying to pay particular attention to changes in the frequency of each diver’s exhalation. It’s certainly not a definitive marker of approaching problems, but a rapid increase in breathing is something a good rescue diver might want to pay attention to.

If your buddy starts to work hard and breath more heavily than usual, get their attention, slow them down, give them some reassurance — such as an OK sign and a squeeze on the arm — will show them that you are watching out for them. Something as simple as getting a diver to pause and wait for a few beats before carrying on can easily avert an unpleasant episode further along.

If you dive with the same crew on a pretty regular basis, you also learn other more subtle signs and body language that will indicate that they are less than comfortable.

As a rescue diver, it is always in YOUR best interest to pay attention to these little markers during a dive. Sure you may be capable of executing a perfect tired diver tow and safe ascent with a semi-conscious buddy, but why take the chance when that whole scenario can be avoided by stepping in a few minutes early?

A slightly different version of this article was first published in Technical Diving International’s eNewsletter in June 2013.

What it takes to lead a technical diving team: A suggested plan for staying real and managing risk

One of the most interesting dynamics of technical diving… both during its planning and execution… revolves around the issue of leadership. It’s not simply a question of who leads and who follows but a much more complex balancing act between responsibilities, experience, team composition and dive goals. And since technical diving is recognized as a high-risk, team-oriented activity, coming up with the correct answers can mean the difference between a great dive and a bad experience.

I guess the most important first step is to understand what we mean by leadership and the factors that inform that definition.

We should start by pointing out that one of the fundamental guidelines recommended is: “The weakest diver leads the dive.”

Now weakest in this context is not an assessment of physical strength or mental fortitude – although these may be factors in some cases. More usually a diver may be “weak” because he or she has less experience with the particular sort of dive being planned and how best to achieve the dive’s specific goals; or they may start the dive with another more subtle disadvantage. On some ocean dives, weakest may be the diver most prone to seasickness and who has taken meds to help deal with that particular stress. It may also be the diver who among his or her peers on the particular day in question wakes up the least rested or most stressed… as in “I’ll lead the dive today because I had a restless night.”

Whatever the actual reason for “weakness” the logic behind this guideline is that it helps eliminate “trust me dives.” In cases where the least experienced diver is the leader, it also offers the best opportunity for that diver to expand his or her comfort zone. Let’s take the example of a cave dive with a three-person team. For this example, let’s say that two of the team have explored the cave on several occasions but for one, this is her first time in. All three may be experienced cave divers, but one is certainly at a slight disadvantage. By having her LEAD the dive, two things are assured. Firstly, she will not be lead into a situation which she finds uncomfortable. Her level of comfort on the dive will most likely be increased since it will go at her pace, and with two companions to “guide” her when the time comes to make a decision – for example “is this the right side-passage to take…” – her comfort zone may be expanded but not breached.

The result will most likely be a much more enjoyable dive for everyone involved since stress levels can be better managed.

This example of leadership during the actual execution of a cave dive may not relate directly to the type of diving you do, but the logic is transferable to all varieties of technical or complex advanced diving whether in a hard overhead environment or not.

It also introduces us to part of the complexity that surrounds the whole question of Leadership in Technical diving, and its definition relative to the importance of coaching and mentorship in the process.

Let’s recap and redefine a little. The weakest diver leads during the EXECUTION of a dive, but this diver would most likely take a backseat role during the actual PLANNING of that same dive.

If we go back to our example, let’s travel by time-machine to a day or two before the execution of the dive to the time our three dive buddies sat down together to plan the dive. We know that all three are experienced cave dives and during their initial assessment of the dive’s parameters they agreed that each had the appropriate training, familiarity with the required equipment, and general experience in the type of environment. What was apparent was that one needed a detailed briefing on the specifics on the dive since she had never been to the site before. This is where the dynamics that influence leadership in technical diving comes into play.

In old-school terms, leadership might be interpreted as the behavior of a tartar or martinet. A person who demands strict adherence to his or her rules and any deviation from those rules will result in some sort of punitive reaction: verbal or otherwise. I am reasonably sure that many of you have first-hand experience of this form of bullying and “management” by intimidation. There is no place for this style of leadership in technical diving… or anywhere else actually. It may have worked to send hapless souls over the trenches during WWI but is about as useful in diving as ashtrays on a motorcycle. There is simply no room for this attitude anywhere close to technical divers planning their dive.

The leader during this stage needs to be empathetic, supportive and their role is more akin to a coach or mentor: someone who encourages others to contribute ideas and suggestions. A real leader shares knowledge, has real information, suggests better alternatives when asked, and gets satisfaction from helping others grow. Essentially, a good leader produces good leaders.
In the example of the planning for the cave dive, the leader might respond to questions about distances and times with something like: “what do you feel comfortable doing?” rather than pushing his or her agenda. In fact, an important part of the mentoring process is to promote the goals of others even when it makes their own subordinate.

For most of our dives, up-front considerations of leadership are a little over-the-top. The vast majority of dives – even technical ones – follow a pattern that is established within the team and roles and responsibilities are simple, understood and virtually unspoken. Often on this type of dive, leadership amounts to little more than: “Hey Jill, how about you run the reel today?” But when game-day brings those special dives… the apex dives for your team… give special consideration to the dynamics of team leadership. Oh, and remember that changing circumstances at depth, may alter who is “weakest” and may require change of “leadership!” But of course, that’s something best learned under the mentorship and coaching of an experienced technical instructor!

A slightly different version of this article appeared in TDI’s eNewsletter in May 2013

“What could possibly go wrong?”

For a quick and dirty definition, you might say that planning for a technical dive is mostly about working out how to deal with contingencies when something hits the fan.

Of course that definition does beg a few questions: for example, exactly which contingencies does one have to deal with during a technical dive, and how fast is the fan likely to be spinning? But as a starting point, and in particular when trying to explain what the sport is all about to someone who is neither trained in nor familiar with technical diving, it works as well as anything else.

One of the first instructor-trainers I worked with was extremely fond of charts and graphs. His students left his workshops and classes with the impression that he had pie charts, bar graphs and spread-sheets of stats for almost everything related to diving. He could tell you what percentage of aluminum 80 cylinders made in a particular year by one or two manufacturers were painted red; or the total number of snorkel keepers that sat unused in the bottom of save-a-dive kits world-wide; or how many open-water divers out of a graduating class of, say, 100 would go on to become dive masters. Totally worthless information in most instances, but what it lacked in usefulness was compensated for in a perverse way by him having lots and lots of it.

Naturally and in accordance with the laws of nature, hidden away among the chaff were a few kernels of useful data too. For example, he had a chart showing the average number of catastrophic gas emergencies year by year per 1,000 dives by certified cave divers.

Much to my disappointment, I am unable to remember any of those figures – useful or otherwise – and in any event I was reasonably sure at the time of first hearing that a good percentage of his data were suspect and most probably thrown together the evening before he was due to share them with us – his eager new instructor candidates. I believe a good number of them were creative artifacts crafted in-situ, so to speak, to add an atmosphere of scientific sincerity to his otherwise wildly entertaining, right-brain presentations.

However, what I can remember was a favorite phrase he used when outlining for us what was involved in his version of contingency planning – “covering your arse” – whether diving on our own, with buddies or with students.

“You can, without much real effort,” he would say. “Contingency yourself right out of the water, and quickly arrive at a point where any and every dive looks too risky to undertake…”

During one presentation, he said: “Let’s take as a given that poor safety engineering in life-critical systems such as low-cost scuba regulators is reasonably commonplace.” He explained that based on the average diver’s yen to save a buck on kit, you could easily create a hugely pessimistic risk assessment for that average diver: especially if you wanted to factor in bad habits like not doing proper pre-dive checks.

Following that logic, and considering the magnitude of loss associated with diving accidents (the threats of death by drowning, embolism, oxygen toxicity, severe decompression sickness, et al) any argument that the probability of said failure is unlikely was smothered.

“Quantitative arguments about kit being unlikely to give up the ghost and go pear-shaped,” he told us; “Are moot if we were to agree that the common human reaction to component failure is panic: and since we cannot reduce instances of component gear failure to zero, and panic usually results in death or injury, diving is unsafe and should never be attempted.

“Clearly this is, to a great extent, bullshit,” he said, “Otherwise we would have to wade through a slurry of dead people at every dive site we visit. But it’s worth noting that people die sometimes for no better reason than they were surprised and unprepared.” He wrapped up the lecture by explaining that the secret is to know what has the shortest odds of actually going wrong on a dive and focusing one’s primary efforts on that, but also being prepared for the unexpected.

A rational and reasonably careful look at the situation makes it obvious that all the threats presented by diving can never be eliminated. So if we want to dive, we have to learn to be happy with an action-plan that deals primarily with threats that are real and that might actually happen. And when we have that sorted out, and before venturing deeper and longer than a sport dive, we should include cover your arse strategies for the unusual… because Murphy is a devious bastard.

I should admit that I am lazy. If there is an easier way to be effective, I’ll find it; and if it’s possible to reuse something again and again until it’s frayed and worn thin, I do so without much hesitation. There are some provisos but those are my guidelines… especially for contingency dive plans.

I am a huge fan of using and reusing the Apex Dive concept. The definition of apex dive that I use and teach is that we can separate various dives into categories by considering the equipment and training required to do the dive. To some extent, the depth and gear limits outlined in most of the technical dive programs I teach, help to draw hard lines around the otherwise ill-defined concept of a “Technical Dive.”

For example, one category of apex dive is for an open-circuit staged decompression dive in open water from a “starting” depth of 30 metres (100 feet) to a maximum depth of about 45 metres (that’s around 150 feet to my non-metric American and Canadian friends). If we add to this the limits we accept is we will use one decompression gas and work within the gas volume rules for only two cylinders of bottom-mix, we have defined the apex dive for graduate from a TDI Helitrox Decompression Program.

I have written down and available in my kit a “simple” action plan for this level of dive, and it includes set waypoints, maximum duration (given a specific minimum starting gas volume), ascent schedules, bailout schedule, lost gas plans, bailout scenarios, what to do if various pieces of kit fail, how to and how long to conduct a search for a lost buddy, how to bring an injured or unconscious buddy to the surface, and so on and so forth.

This apex dive plan is designed to be used with ANY O/C dive at this level or shallower and shorter. I use a similar approach to other categories of dives to greater depths (60, 75, 85 metres for example), and shallower (to depths of only 30 metres specifically), and for dives in different environments such as caves. I also have a similar array of plans for similar dives on a closed-circuit rebreather.

Much of a plan laid out at one level, is almost exactly the same as the plans for dives at the level below or above. The gas management plans, ascent and bailout schedules change of course, but a lot of the scaffold keeping the plan upright, is common across the board. Also for each of these dive plans there is a segment you could call the “it’s been a really bad day” scenario. The situations covered in this are the ones that are unlikely to occur, but which carry with them, a really serious magnitude of loss.

Some of these situations are the “contingency yourself out of the water” scenarios that my old IT told his classes about. Notwithstanding his advice to “ignore the unlikely,” it seems prudent to me to have something in place to deal with several of the unlikely possibilities when diving deep and long.

For example, I have nothing that will help me deal with a lightning strike while hanging on a decompression line, but I do have a plan to help get me back to the surface with a broken buoyancy device. As unlikely as it is that a wing would spring a catastrophic leak underwater, most wings used in technical diving do have a ludicrously venerable weak point: the 15-cent plastic elbow that connects its inflation hose to the body of the wing itself.

While judicious handling during transportation, a good assembly and pre-dive inspection, and a bubble-check before descending can all help prevent this particular failure, losing a wing at depth would be serious, and in most cases could really ruin your day.

At some point in the past, you have probably heard the advice to dive a balanced rig. A balanced rig is, according to a definition just read on Wikipedia and a couple of diving websites, a rig that a diver can swim to the surface from depth without the help of a wing/buoyancy device when the cylinders are empty because it will then be “neutrally buoyant.” Someone with a rudimentary understanding of dive kit and basic physics might read the previous sentence and tell themselves: “yea, sounds legit.” The rest of us may be left with some nagging doubts.

For example, what’s with that “neutral with empty cylinders” nonsense? I am a fan of divers NOT getting into the water with too much ballast but cylinders are never empty and since whatever gas is in them has mass, surely in a balanced rig/broken wing scenario, gravity is going to win.

In my opinion, we need some alternative to swimming our kit and ourselves up from depth without ANY assistance. As luck would have it, we do not have to look far for some solutions.

Unlike most sport divers, few open-circuit technical divers have truly ditchable weights. Their ballast is supplied by integral items of kit such as steel primary cylinders and a stainless-steel backplate. Sidemount divers may have the option of dropping one primary cylinder if needed, but divers wearing back-mounted doubles do not. Therefore, in the event of a wing failure – however unlikely – a good plan is to have some back-up buoyancy or a structure plan that includes some potentially helpful suggestions.

Here are a couple of tactics that may help you if the inflation hose and your wing become separate entities while you are faced with a long ascent between you and a cup of hot chocolate back on the surface.

My council would be to forget trying the “swim up balanced kit” technique. By all means work on the principal of wearing a “balanced kit,” but understand that a long staged-decompression ascent is not something you want to undertake as a continuous swim.

If there is structure nearby – a wall, shelf, wreck whatever — use it to stabilize yourself. Grab it, get yourself sorted out, “talk” the situation through with your buddy and try to relax. Unless your wing failure was accompanied by a huge loss of gas from your cylinder, you have something to breathe while you think. Relax and work out your options. If there is no structure, grab your buddy and use them as a stabilizer. It’s surprisingly simple to hang onto a buddy’s harness and let them add a little additional gas to their wing to support the two of you. But it does require a little practice!

Let’s assume you are wearing a drysuit. Add a little gas to it to offset gravity a little. You may be lucky and your suit may be all the help you need. Keep your buddy or buddies close, and start your ascent. Good luck and let’s meet up for a coffee sometime… but chances are that your suit may not overcome gravity’s pull completely.

If there is an upline, make for it and use it. At this point it may be worth noting that a prussic loop can be useful place to hang from while you work on options. A prussic is simple to tie to an upline and can be used just as effectively as an ascender is used in rock climbing (their original application). I carry a length of 3mm equipment line tied in a long loop in my wetnotes for this reason.

Things should be golden with the combination of a solid upline, a drysuit and a prussic loop, plus the administrations of your buddy to help with stage deployment etc. as needed. But what if there is no upline.

This would be a good time to send a DSMB aloft. Actually, it may be prudent to deploy a DSMB even if there is an upline, depending on how your surface support has been briefed. With the exception of the very smallest, silliest “safety sausage,” a DSMB (a Delayed Surface Marker Buoy) should provide sufficient lift to support a diver in place of a wing. If you have the choice, you may prefer to hang from a line attached to a small cave or wreck reel rather than a spool in this situation, but either works just fine… and spools rarely jam or bird’s nest.

In several thousand dives, I have had one wing failure and one buddy have a complete failure. I have conducted a couple of test dives with the dump valve removed from my wing – just for the fun of it – but only one real-world failure. Therefore, the weight of logic and statistical evidence is on their side of the argument that states that this type of gear failure is highly unlikely. It really is, and chances are it will never happen to you at any time. However, next time you have a dive planned with your usual buddies at a site with a hard bottom within sensible distance of the surface, and you have nothing better to do, try this. Empty your wing completely and get yourself back to the surface using an alternative method. You will certainly learn something about yourself and possibly your buddy, and most likely you’ll have fun too.

Remember as well, it does not take much to contingency yourself out of the water, but with a little forward thinking, planning and practice, there is no need to.

Inspection of a CCR after an accident…

One of the findings at Rebreather Forum 3.0 was for CCR manufacturers and other community members to publish a worksheet to help accident investigators collect meaningful data from rebreathers involved in diver deaths. A sombre topic for sure but the need to have some “standards” and some sort of unit-specific checklists is apparent given the wide gaps in information gathering to date.

Martin Parker — the managing director of Ambient Pressure Diving, the manufacturer of Vision Rebreathers (the Inspiration, Evolution and Evolution+) — recently posted a worksheet. It is available in PDF form from the link below.

Click Here

The description of some procedures are graphic and not suitable reading perhaps for the squeamish; however, I believe this is a good start… Kudos to Martin.

AN OPEN LETTER TO NEW DIVERS ABOUT STAYING ALIVE

Hi: and congratulations on your new open-water certification. Diving is extremely cool and I hope you get as much out of the experience as you can: talk about opportunities… wow!

You probably do not recall everything you read while doing the academic work to earn your certification, so I would like to take this chance to remind you of something important: An overhead is no place for an open-water diver: period. There should be no exceptions to this.

I’m writing to tell you this because there is a chance that sometime soon, someone – perhaps a buddy or a more experienced diver, maybe even an instructor – will try to tell you differently. Please tell them they are wrong. You can quote me if you like, and you can use stronger language too, but much more importantly, you can find the same advice in training manuals from EVERY agency and any reputable dive professional. Please take the time to check this out.

Caves, caverns, and the inside of wrecks, are NOT places to find yourself without specialized training. And I do not mean advanced open-water, or rescue diver or even a divemaster or instructor training but specialized training in those specific environments. If the person, even an instructor, trying to get you into a cavern or cave, calls you a wimp or says that everything will be OK as long as you “stay close and follow me,” please walk away. It could save your life and in any event, will send the right message.

If they are an instructor, suggest they reread their standards and procedures manual – it really does not matter which agency they teach for because they ALL forbid this sort of behavior and this type of dive. Fact is, suggesting that you let them “guide” you into an overhead environment could get them reprimanded and their teaching status suspended.

A few days ago, a buddy of mine pulled an open water diver out of a cave in North Florida. Against all odds in this sort of scenario, she was alive… shaken, but alive.

Her explanation was that she went into the cave just to take a quick peek at what was in there because someone (her Dad) had convinced her that as long as she did not go in too far, she’d be fine.

In a perfect and just world, she will be able to sit down sometime soon with her idiot father to have a chat. She almost died. She would have died if my friend had not been there to find and save her. (He is, by the way, a very experienced cave instructor and explorer.)

OK, so here are some things to think about. Untrained divers kill themselves in caves with sad regularity. This has been happening for years and unfortunately continues to happen even though it is preventable. People who should know better and who have read the “rules” choose to ignore common sense and believe they are immune from the laws of physics… and Murphy.

The poor sap who ends up dead may have been told that caverns and caves are safe, and believed it. They may also have been a super master specialty open-water instructor and have a collection of badges as long as their arm, but all that means bugger-all inside a cave when they realize they are lost, are sucking seeds and stems from their almost depleted single cylinder, and start to claw at the limestone ceiling and walls wailing for salvation.

Caves can be beautiful but that beauty can become extremely ugly in a couple of heartbeats. Here are some things that have happened to untrained divers who almost died in a cavern or cave but somehow managed to find their way out.

“We only intended to swim in a little way, but there were lots of passages and we got turned around…”
“The water was really clear but my buddy crashed into the bottom and I lost sight of him and the exit. I think he is still in there…”
“We had a light between us but it went out. It was really dark and I kept swimming into the walls…
“I swum in a little way and then my octo started to freeflow…”
“We followed a line and it just stopped and then I got tangled in it…”
“I panicked when I turned and could not see the exit.”

There are no grey areas when it comes to this overhead stuff. Going in there without the right kit and training is seriously tempting fate, and there are so many other ways to enjoy yourself with scuba. Please, please, do not go into an overhead until you get training in overhead diving and get yourself some serious kit and gain the experience to use it properly.

Thanks. Now go dive… in open water.

Steve Lewis
TDI instructor trainer #6

The Five-Minute Neurological Exam: don’t leave home without it!

I was somewhat surprised to learn that although the majority of technical divers believe in the value of the simple neurological exam — taught to students during decompression courses to identify signs of potential DCS — few carry a printed copy (or pdf on their phone or tablet) with them on their dives.

What follows is ONE of several versions that exist.  I use it because it seems the most comprehensive and straightforward. Regardless of if you opt to use this or another, remember to record the results, and in particular to note any abnormalities. If a dive buddy is evacuated for evaluation at a hyperbaric facility or even a hospital emergency department, sending a notarized copy of this with them may help them get treated more rapidly.

There are NINE test categories… #  1, 7 and 9 are key.

1. Orientation (these may sound facile but they may indicate real confusion in a otherwise normal-looking victim… do not omit them).

  • Ask diver for full name and age
  • Ask diver to state present location
  • Ask diver what time it is, what day of the week, the date and month

2. Eyes / Vision

  • Ask diver to count the number of fingers you display (do this several times using different numbers)
  • Check eyes together and then separately
  • Ask the diver to describe a distant object… something several metres (yards) away at least
  • Have diver follow your clenched fist with his/her eyes as you move it up, down, left and right in front of their face. Have them hold their head still and check that their eyes follow your movements smoothly
  • Check both pupils are equal in size

3. Face (muscles and nerves)

  • Ask the diver to smile and check there is symmetry in their expression
  • Have the diver whistle. Watch the “pucker”. Note any drooping of lips.
  • Have the diver close their mouth tightly and feel that their jaw muscles are equally tight
  • With their eyes closed, stroke the diver’s face, forehead and neck and ask them to describe the sensation. It should be similar

4. Hearing

  • Check hearing by rubbing your thumb and forefinger together with the diver’s eyes closed. See how close the fingers have to be to be audible.

Note: If the surroundings are noisy, ask bystanders to be quiet and have noisy machinery turned off if possible.

5. Swallowing Reflex

  • Have the diver take a sip of water and watch their “Adam’s apple” as they swallow to be sure it moves up and down

6. Tongue

  • Have the diver stick out their tongue. Note if it droops, moves to one side or other abnormal movements.

7. Muscle Strength

  • Place your hands firmly on the diver’s shoulders, have them “shrug”. Note if there is any difference in strength
  • Have the diver squeeze your fingers with both hands at the same time, notice any difference in strength. Have the diver hold his hands together at chest level and elbows high. Gently push and pull the elbows while the diver resists the movement. Notice any difference in strength
  • Check leg strength by having the diver lie flat and raise and lower the legs while you resist the movement

8. Sensory Perception

  • Check the diver’s ability to feel you touching them lightly starting at their shoulders and working down to cover their entire body. Compare degree of response on each side. The diver’s eyes should be closed while this is done.

9. Balance and Coordination

Note: Be prepared to protect the diver from injury when performing this test.

  • If possible, have the diver walk heel to toe and check balance and coordination. Make sure the diver does not fall!
  • Have the diver stand with feet together and eyes closed. Ask them to hold their arms straight out, and hold that position for half a minute at least. Be ready to catch them if they lose their balance or fall.

After the exam…

The diver’s condition or the environment may prevent you conducting one or more of these tests. Record any omitted test and the reason.

A cycle of tests should be repeated at 30- to 60-minute intervals while awaiting assistance in order to determine if any change occurs. Report the results to the emergency medical personnel responding to the call.

If there is a delay getting to a suitable recompression facility, repeat the test hourly.

THE FIVE WAYPOINTS AND SIMPLE ASCENT BEHAVIOR

“You’ll always miss one hundred percent  of the shots you don’t take.”
Wayne Gretzky, the only NHL player to have his number (99) retired across the league – Born January 26, 1961

 

With all the postings recently on the scuba forums asking about deep stops and gradient factors, I figured it might be time to get back to some basics. Let’s talk briefly about the five waypoints and ascent behavior, which is a fancy name for a couple of simple ideas designed to help divers manage decompression stress and get out of the water after a dive with all their fingers and toes in place, and all their faculties intact. For the record, decompression stress is something that affects every diver at the end of every dive regardless of what type of dive went before. That said, I believe that for this discussion, it makes most sense to concentrate on the simplest possible ascent: surfacing from sport dives.

In the hope of getting everyone to sing from the same song sheet, let’s define sport dives as dives that require only one decompression stop (sport diving textbooks call this a Safety Stop), and which are conducted no deeper than the common depth limits set by several of the major sport diving certification agencies: 40 metres or 130 feet.

Now, I have to make a small confession, I teach technical diving and I have been teaching students in my classes about Waypoints and Ascent Behavior for more than 14 years. Learning the basic guidelines behind this stuff is a precursor to getting Deco on the Fly squared away. And I include a little module on that as part of my decompression courses. It is easy to learn, helpful and a good mental exercise for folks who want to conduct dives that are deep or long or both.

But it is MORE important to emphasis that the guidelines controlling ascent behavior are NOT only for technical diving; and the five waypoints, which form the underlying structure on which ascent behavior is built, are shared by ALL dives, even sport ones.

Obviously, most sport divers do not need to be bothered by anything outside the stuff covered in their student workbooks. And you will not find anything about Ascent Behavior, The Five Waypoints or anything similar in any of those. Many sport divers are happy – and well-advised – to strap on a Personal Dive Computer (PDC) and follow its directions. However, some of us like to know more than the suggestion “to follow what your computer tells you to do.” For example, if you were one of those kids who took things apart – like the wall clock that Auntie Jane gave your mom and dad for a wedding present – please read on.

The first step is to understand a basic concept, as true in diving as in anything else: when something looks complicated, we can make it look much less threatening by slicing it up into bite-sized pieces.

OK, once we buy into that, let’s apply its logic to the journey from a dive’s maximum depth (or average depth if you want to be more precise) to the surface. This trip can be punctuated by Five Waypoints. And just to restate an important point, these five waypoints work for ALL recreational dives whether they take place in 100 feet or 100 metres. The only differences are that on an ascent from a deep dive, there will be one or more gas switches (from a mix breathed at depth to a gas designed to optimize off-gassing); and the “safety stop” or single decompression stop that is common and recommended for a sport dive, is replaced by two, three or a whole bunch of staged decompression stops ranging from three minutes to many, many times more. All that said, the five fundamental waypoints remain the same!

These are:

1. Planned Maximum Depth or Actual Average Depth

2. Off-Gassing Ceiling

3. First Running Stop

4. Staged Decompression Stop(s)

5. Surface and Surface Interval Time (an often neglected but important part of all dives)

Most technical divers will probably already have an idea what each waypoint is but let’s have a brief explanation for the sport divers reading this.

Number one is simple: how deep did you go or, if you swum a saw-tooth profile, what was your average depth. The second waypoint is trickier to get your head around, but try this for a start. The off-gassing ceiling is a theoretical point in the water column during a diver’s ascent where the net result of the on-gassing and off-gassing meringue that goes in inside a diver’s body, is that more inert gas is coming out of her body than is going in. In other words, the off-gassing ceiling is the point where decompression and true ascent begins. For sport divers doing sport dives to 40 metres or less, we can ballpark this point at a little less than one and a half bar / ata shallower than the average depth. So for a dive to 40 metres or 130 feet on an EAN30 for example, the off-gassing ceiling (or gas transition point) sits at around 25-27 metres or slightly shallower than 85 feet.

Five Waypoints and Ascent BehaviorThe next waypoint – number three – is the first running stop, and at this level of diving, we can fix this at about one bar / ata above our off-gassing ceiling. Once again this is something that the average sport diver may have an issue understanding. I use the term running stop rather than Deep Stop, because I believe Running Stop better describes what goes on in the water column when a diver switches her behavior (ascent speed) to comply with the guideline. For a sport diver, Running stops are not actual stops but rather a change in ascent speed. At the sport level, this translates to the diver rising through the water column at around three metres or 10 feet per minute. Another way to write this is to put a one-minute stop every three metres from the beginning of the running stops until the safety stop is reached. End result is the same… the diver’s ascent has been checked.

The second to last waypoint is the safety stop. I think everyone knows that this is a staged stop of three to five minutes. All I contend is that this is a staged decompression stop by another name and rather than being optional, should be de-rigueur on any dive involving more than a minute on the bottom. Shallower than 30 metres or 100 feet, and well within the NDL, a three-minute stop is fine, deeper or closer to the NDL, stopping for five-minutes makes more sense in my opinion and experience.

The final waypoint is the surface and the surface interval. The SIT is the final stage in a diver’s little gamble with DCS. It is during this time that our diver has to be aware of any strange messages from her body. And it is during this time that she has to prepare herself for her next adventure. In the final analysis, this stage is as important as the rest of her ascent.

OK, those are the Five Waypoints, now let’s take a quick look at how a diver should behave moving from one waypoint to the next. This article is about Ascent Behavior after all!

Here’s the simple pattern for a sport dive. The diver ascends at nine metres or 30 feet per minute but no slower, between waypoints one and two (depth and off-gassing), and nine metres or 30 feet per minute but no faster between waypoints two and three (from off-gassing to first running stop). The diver then moves at three metres or 10 feet per minute between three and four (running stop and safety stop), and once the safety stop is completed (usually at either six metres or three metres (that’s 20 or 10 feet), she will go slowly to the surface no faster than three metres or ten feet per minute.

This is a variable ascent speed: tricky to master but certainly doable for just about ANY competent diver.

What bears thinking about and certainly bringing to everyone’s attention is that following these guidelines, a diver who has finished conducting a 10-minute dive at 39 metres (a smidgen less than 130 feet) will take around 14 minutes to surface! (See illustration. Apologies for imperial users but the conversion to feet is: 39 m = 129 ft; 26 m = 85 feet; 17 m = 55 feet; 3 m = 10 ft.)

A note for the propeller-heads among us who thrive on the nuts and bolts of deco theory: Following these guidelines makes for a slightly slower ascent than all but the most conservative PDC running a dual-phase algorithm. What is key to making this work is understanding that any time spend below the off-gassing ceiling is adding to bottom-time, and that running stops at this level is just a fancy name for slowing one’s ascent to three metres or 10 feet per minute.

Also important is to realize that decompression theory and the algorithms generated by those theories are not grounded in a perfect science. The maths are exquisite. How closely your body and mine follow the tracks laid down by those mathematics is something else more akin to a crap shoot to quote a decompression expert.

Sure, your brand-new fourth-generation PDC is a thing of beauty, has a gaming console and a CPU more powerful and programming more complex than the computers that helped land Neil Armstrong and Buzz Aldrin on the Sea of Tranquility. But decompression theory is just a stab in the statistical dark, and I believe that having an understanding outside of your PDCs user manual — the Five Waypoints and Ascent Behavior for example — is a useful nugget of knowledge. Dive safe folks.

This essay is based on an article that first appeared in Diving Adventure Magazine in 2006. A version was also used as the basis of a chapter in the Six Skills and other discussions called The Deco Curve: Controlled Ascent Behavior and contingency decompression on the fly.

Hi, my name is Bill and I’m here to help…

What exactly does Hogarthian mean?

“Man has such a predilection for systems and abstract deductions that he is ready to distort the truth intentionally, he is ready to deny the evidence of his senses only to justify his logic”

Fyodor Mikhaylovich Dostoyevsky, Russian Novelist: November 11, 1821 – February 9, 1881

Well a whole generation ago, if you were a cave diver hanging out in North Florida, you knew exactly what a Hogarthian rig was. You might not have agreed with it, but you knew who did, and the way they rigged their kit before going for a dive was easily recognized. Crap, you could even dive with the guy who lent his name to the system: William Hogarth Main.

In the interim, what used to be a pretty straightforward definition has become disturbingly fuzzy.

In the overall scheme of things, there’s no big deal in the kind of change that inches closer and closer to clarity, but I’m not a fan of change that moves in the other direction. Accordingly, indulge me today if I whine a little about a good idea gone wonky. Oh, and while we’re at it, let’s try to get a few historical ducks to line up in a row.

Let’s start with the ducks. Bill Hogarth Main is a real guy. Contrary to the views recently expressed in an onLine scuba forum by a newly minted tech diver and self-acclaimed “DIR Practioner” (whatever the heck THAT may be), Bill Main is not some fictional figure created to frighten the meek into conformity. He is just a guy who has been cave diving for a good while and, as far as I know, he still guides at a couple of select caves in North Florida, where he makes his home.

Hogarthian Gear Configuration is named after Bill because it is based on his minimalist approach to kitting up for a dive. Hogarthian has been referred to as the Zen of Cave Diving. Not a bad definition really since the Alpinist Way or Approach to any active, high-stress, high-risk sport is commonly linked to Zen. (I must add that as a Buddhist convert (maybe especially), this coupling is a mystery to me, but let’s leave it alone for the time-being and move on.)

When the concept was introduced to me, the principles seemed VERY straightforward and abundantly clear: Hogarthian kit was simple, serviced, standard, shared, suitable, and streamlined. I can still see my cave instructor standing in front of a white board with those words scrawled on it.

Before we continue, allow me to expand on those points just a smidge.

SIMPLE: nothing convoluted or contrived, and if something can be shaved off, filed down, or trimmed, do so. An example of simple: a piece of kit that can be fixed properly with stuff available from a hardware store. (This was explained to me when discussing dive lights with Bill Main and Lamar English back when I had hair.)

SERVICED: pretty easy to get this one straight. Nothing goes into the water as life-support that is not in working order.

STANDARD: you and the other members of your dive team have agreed on the appropriate kit for your dive and each of you therefore knows the operational niceties (and limits) of those tools.

SHARED: your buddy has your six-o’clock (your arse if you are only familiar with digital time-pieces). This principle can be applied to most of what is taken and what is needed in the water, but the FUNDEMENTAL thing shared is GAS. Tech divers follow gas rules that dictate that a portion of the gas in my tanks belongs to my buddy.

SUITABLE: if you do not need it, do not take it. More importantly, if a piece of kit was never intended or designed to cope with the environment you are going to take it into, resist the urge to push its functional envelope.

STREAMLINED: now this should come as no surprise to anyone who has read a book on technical diving. Short version: do not look like a Christmas tree, get rid of danglies, and aim for minimal resistance when swimming. I was once called on this score by Bill Main for wearing a drysuit to go cave diving… wow, that really is a shocker, isn’t it?

At some point, the definition Hogarthian got high-jacked and people started to apply it to kit choices and configurations that were many zip-codes away from what started out as a good idea. There is certainly nothing wrong with progress, and smart innovations in industrial design, electronic engineering, and materials manufacturing have made fools out of many of us who said: “I’ll never do that!” But I am not sure that moving away from the six basics that originally defined Hogarthian Configuration constitutes good thinking or best practice.

Those six guidelines actually hold true as much today as they did in the 1980s and early 90s when they were developed. As a CCR and OC sidemount cave diver I plead forgiveness for some of the choices I make, but I like to think that my diving philosophy is supported by those six “S” words.

Certainly when I look at divers who have adopted the more or less standard North Florida Cave Diver’s Kit consisting of back-mounted doubles, isolation manifold, wing/backplate, long-hose, bungeed backup, and a drysuit, the vestiges of Bill Main’s ideas are there… under the surface in some cases but the smell and taste remain.

What disturbs me though is that as functional as this layout has been, and how ubiquitous it has become in the technical diving community the world over, it is neither a perfect solution, nor does it conform to several of the basic tenets of Hogarth’s “Zen Outlook.”

Certainly to label it as “Right” or the best option available confronts the one principle of Hogarthian configuration that I neglected to add to the list above. I saved it until last because I feel it is the most important and deserves to be here at the end.

And frankly, without it, all the rest falls apart. What is it? Just this: Constant focus on improving the system, because nothing is perfect.

Thanks for your attention. History lesson over.

Accident Analysis (take two)

Enroll in any high-risk, high-stress endeavor, and the chances are that one of the first topics your instructor will throw into his or her opening conversations with you is how many ways you can kill or hurt yourself doing what it is you just signed up for. The first steps in just about every training program in the “adventure” category of things to do – from flying a plane to shooting a gun (at targets or bad guys) or climbing rocks or heli-skiing – will walk the activity’s newcomers through potential pratfalls. It’s a kind of universal mantra: learn from the mistakes of others.

Diving courses, well, certainly ones aimed at imparting skills for technical diving, work in a similar way. The politically-correct term used in the industry is Accident Analysis, and the framework for the AA modules I have been taught, worked with, or developed and written over the years follows closely the one first constructed and then refined for teaching cave diving. In its shortest form, an Accident Analysis module boils down to three stages: here’s some advice about what works, here are some examples of people ignoring that advice, now can we agree that they were stupid and that we will try not to follow their example.

For the record, here are three real-life scenarios that got people killed. I share these with tech students. See what you make of them.

Scenario one: August, 2009. Three experienced sport divers attempted a deep dive off the coast of California. The participants were a dive-store owner, his friend, and a 22 year-old shop employee and DM. Although the trio had done similar dives before, none was certified beyond sport-diving limits. The dive shop involved did run tech programs, but they were overseen by a third-party instructor. Worth noting is that this individual was NOT part of planning the dive in question and was apparently not involved at all. By the way, the dive was planned to be around 60 – 65 metres using air as back-gas. It turned out that the actual dive’s depth exceeded the plan at 70 metres plus. During ascent, the “team” lost contact with each other and the 22 year-old man was seen drifting away from his dive “buddies” and was sinking. After some time, his body was found on the surface.

Scenario two: November 2009. Two divers attempted to dive Eagles Nest on CCRs. On a previous occasion, the pair had been taken to the “cavern” area of the nest by an instructor teaching them a course on CCR which they did not pass. For the record, one must apply a very liberal definition of Cavern to describe any part of the entrance to Eagles Nest, an extensive and very deep (80 metres plus) cave in Hernando County, Florida. Also for the record, neither man was cave certified, nor was the instructor who had previously taken them to the cave for training dives, a cave instructor. During their ill-fated final dive together, the two CCR divers had opted to use a diluent in their rebreathers was hot for the depth they attained (reportedly one containing 18 percent oxygen). If this were the case, it would have made impossible at depth controlling their setpoint (partial pressure of oxygen) at recommended levels of 1.2 or 1.3. Also, a meaningful diluent flush, cell test would have been impossible. At some point, approximately 170 metres from the cave’s entrance area, one of the divers experienced difficulty and died. His body was recovered in one of the deepest sections of the cave some time later by a team experienced in deep-water body recovery.

Scenario three: In mid-November 2008, the bodies of two divers were recovered from Wayne’s World (aka School Sink), Pasco County, Hudson, Florida. Wayne’s World is considered an advanced cave dive yet only one of the buddies had ANY overhead training, and that was only an Intro-to-Cave card – well shy of what’s recommended to dive this site. The other diver carried only an Advanced Open Water certification. Both were wearing traditional North Florida Cave Kit with decompression gas. Recovery divers discovered both bodies within 80-90 metres of the cave entrance. Their bodies were separated by approximately 30 metres distance. One was found at a depth of approximately 14 metres with his oxygen decompression gas deployed (oxygen is considered highly toxic if breathed deeper than around 6 metres). The other was deeper in the cave, dead on the ceiling showing signs of distress. During inventory of the dead divers’ equipment, this diver was found to have his isolator closed with one cylinder empty and the other containing at least 3500 psi.

Here are the questions I use to begin the analysis process in the classroom.
Where did logic chain begin to break down?
What simple guidelines seem to have been ignored in these cases, and how might ignoring them have contributed to the seriousness of the situation these people found themselves in?
In all three cases outlined, whom do you feel should shoulder some responsibility for these deaths?

 

Of course, by its nature, this exercise is speculative since the process asks us to form conclusions based on a sandwich made from a couple of slabs of conjecture and a thin layer of fact. There is also a complex moral issue with us forming a judgment about someone’s behavior – which inevitably happens – without their input during our deliberations. After all, there may be rectitude in their behavior – although on that last point, experience does tend to suggest there are no fixes for stupidity.

 

However, all that aside, the exercise serves a purpose which is not to allot blame but rather to identify errors, understand how easy it is to mess up and from that deductive analysis, avoid repeating the same mistakes ourselves.

There’s one other shortcoming. Between you and me, I dislike using the word Accident to describe many of the examples we use to point out the kind of behavior that results in diver deaths.

What is an accident?
One definition of an accident is “any unplanned event that resulted in injury or ill health of people, or damage or loss to property, plant, materials or the environment or a loss of business opportunity”.
That’s OK as far as it goes. Certainly unplanned seems to be the pivotal point, but it begs some further investigation… and definition surely. Let’s take for an example scenario three above.
It’s well known that diving in a cave without training is a poor choice. Did the two guys who died know that diving without training, experience and kit in a cave was a poor choice? Sure they did. There’s a bloody great big sign to remind them at the cave entrance. They planned to dive ignoring that fact, and I’d wager the general consensus from fellow divers would agree as inappropriate using a definition that includes the term “an unplanned event” to describe their actions.
Given the circumstances of their dive, their behavior was risky: they took a risk and their calculations – whether conscious or not as to how likely their choice was to backfire and kill them – was incorrect. They screwed up, assuming naturally that their intention was not to kill themselves. Think about this: One guy had around half his back-gas available. All he had to do was switch regs or reach back and check his isolator. Yet signs at the site of his death indicated he drowned.
Is deciding to take a risk and miscalculating its inevitability an accident? Is ramming into the back of a parked car at high-speed with an alcohol level above the legal limit for a driver – whatever that limit may be – an accident? Surely it’s recklessness, carelessness or criminal. What do you think?
The Brits use the term “death by misadventure.” For the record, the definition of this phrase in Webster’s is “a death due to unintentional accident without any violation of law or criminal negligence. Thus, there is no crime.”
Death by misadventure does have a nice ring to it: no blame, just a couple of guys out on a lark that went wrong. Is that how you see scenario two, or is there more to it.? Is there some level of culpability, negligence?
A buddy of mine tells his students that cave diving is deceptively easy.

“Anyone can swim to the back of a cave,” he says. Another buddy tells his students that “Even an open-water diver can make a dive to 60 or 70 metres.” They also add that their statements are only true until something goes wrong. In a pear-shaped world, it’s finding the way out from the back of a cave or getting back to the surface intact from 20 storeys down that presents problems.

 

When things go wrong underwater, the fundamental skill becomes survival. In diver training, this is broken down into three major tasks:
• control the natural fight or flight (or freeze) response
• suppress panic
• work on getting your ass back home (This latter skill requires critical decision-making, physical and mental actions involving some level of multi tasking, which some people can do, and some cannot.)
The ability to react appropriately when things fall apart is an acquired skill even for those who have some natural abilities and the skills to survive. It takes knowledge backed up by experience and practice. How much of each is a hugely debatable point, but I believe the diving community as a whole agrees that it takes more experience and practice than one can gain during the average technical diving class… even when full knowledge of what to do and how to handle the situation has been taught.
Well, that’s a shocker, isn’t it? We certify divers to do dives but we believe they may need more experience and practice before they can survive something going pear-shaped!
If this were the case, our beaches would be littered with the dead and injured and clearly they are not. Most people leave a dive class – regardless of whether it is a sport diving or tech diving class – with a full understanding that what they just earned is an OK to go out into the real world and gain experience and practice, gradually. They have the knowledge to do so well within the limits of their training. And that is the key… within the limits of their training. Without training or with a disregard of what that training taught, all bets are off. They have no knowledge and are unlikely to live long enough to gain wisdom.
So what is the bottom line, take-home message from Accident Analysis?
I’ve always reckoned it to be the advice to take things slowly, to be cautious, and to stay within the boundaries of your comfort zone, which are the actions of a wise diver. What does Accident Analysis say to you?