A thought experiment concerning “team bailout” when diving CCR in a cave…

LongO'THREE

First off: Can anyone explain the rationale behind “Team Bailout?”

Hang on… that needs to be rephrased.

Let’s start with this: Is it just me or is the concept of “Team Bailout” for CCR Cave Diving just bat-shit crazy?

Yea, that’s way closer to what I was thinking…

Ok, for those of you who may not be familiar with the team bailout concept, it suggests that a buddy team diving CCRs in a cave environment – you know, wet rocks, hard limestone overhead, perhaps an hour or more from the surface – that they carry sufficient bailout gas “…to get one team member back to fresh air from the point of furthest penetration.”

In certain circumstances, this approach may sufficiently protect team members from harm, but those circumstances should not include the category of diving the vast majority of us engage in.  I believe, a better, more satisfactory practice is for EACH diver to carry MORE gas than is required to get themselves back to fresh air from the point of furthest penetration.

The arguments I’ve heard against using this more conservative tactic is: 1) carrying multiple bailout cylinders is a pain; 2) the likelihood of more than one CCR failure among a team is too slight to consider; 3) calculations for the volume of gas required in a high-stress situation adhere to a well-defined formula corrected for all variables, and therefore it is possible to calculate with a degree of accuracy sufficient to be safe.

Experience is a better guide to best practice behavior than deductive logic, and I have limited experience in this area. So, perhaps my paranoia is unjustified; but here’s a scenario we might all give some thought to before our next cave dive.

Here goes:
Three CCR divers were in the back of a low-flow cave. Each carried an aluminum 40 filled to capacity, which lumped together was enough gas to get any one of them out of the cave and back to dry land. Even at double their normal consumption rate, this was the case. Their dive was well within the parameters of team bailout therefore.

At the worst possible time, Diver A’s CCR went belly up. He could not revive it in any way, and has to bailout. The team began its swim out. A little sooner than expected, but still more than one-third of the way out, Diver A’s bailout cylinder was empty, and he asked Diver B for her cylinder. She suddenly realized that by giving it up, she will have no contingency gas herself. The surface was still a good swim away. Very reluctantly, she handed over her bottle. Momentarily distracted by her thoughts, she floated to the cave’s ceiling and took a minute to recover, which held the team’s progress to the surface still further. Stress levels in all three team members was now peaking. None of them was comfortable.

They were in fact, more small failure, one additional glitch away from a total melt-down. A surprisingly short while later, Diver A – who had been thinking for the past several minutes, what would happen if he got a bottle with a dodgy regulator or had a free-flow, and whose respiration rate had understandably elevated – once again was down to seeds and stems. This time in his second bailout. He turned to Diver C. Diver C had been thinking about this hand-off for a while. He was VERY uncomfortable donating his gas… however, he did so. Several minutes later, the team arrived in the cavern area. Diver A had barely sufficient gas to conduct a safety stop, but did so. Just as the team left the overhead, his regulator began to breath very, very hard.

On shore, while shucking their gear, the group was uncharacteristically silent, each with their own thoughts. What do you think the outcome of this incident was:

  1. This group did not cave dive together ever again
  2. This group rethought their bailout strategy
  3. This group  continued to dive team bailout

Save

Advertisement

Don’t even think about asking for an overfill in your aluminum cylinder…

LongO'THREE

I don’t trust the integrity of aluminum scuba cylinders… at least, not enough to:

  • overfill any aluminum cylinder (in fact I often under-fill aluminum stages and decompression bottles keeping below the manufacturer’s suggestions for working pressure);
  • keep them in service more than a year or two after their first hydrostatic test cycle (which is every five years where I live);
  • wander very far from a very conservative approach to the frequency of formal visual inspections, choosing instead to follow the manufacturer’s suggestions for cylinders in Heavy Service;
  • miss Eddy Current testing as part of the VIP procedure (EVEN WITH BRAND NEW CYLINDERS!);
  • be trusting of loners and rentals, especially those with the look of being in service since, and taking direct hits during, the Gulf War.

My reasons for being a “mother hen” are based on a professional ‘cover everybody’s arse’ strategy to risk management. And a certain knowledge that high-pressure vessels have an enormous potential to harm. I’ve witnessed the aftermath of two separate aluminum tank failures and have a very strong mental image of the chaos each caused. I read somewhere that the amount of energy stored in a “recreational scuba cylinder,” which one can take to mean an aluminum 80, is about the same as two WWII British military hand grenades. A sobering thought.

Of course, one should be equally cautious with steel cylinders, which have a similarly dangerous potential. However, aluminum cylinders more easily carry the scars of mild to moderate abuse in typical everyday service. Couple this with their inherently different reaction to repeated filling and emptying – aluminum’s fatigue limit – and the dramatic reduction of an aluminum cylinder’s endurance limit from several hundred thousand fills to perhaps hundreds when it is over-filled – and its potential for failure is increased.

Of course, an easy out would be to avoid using aluminum cylinders altogether, but the buoyancy characteristics of aluminum makes 80s and 40s excellent stages, bailout, and decompression bottles. Besides, avoiding their use would be a dramatic over-reaction.

Working within manufacturer’s limits and the handling guidelines they supply us, aluminum is safe for many, many more fills than any of us is likely to ask it to endure.

But we do need to be mindful of those limits and guidelines.

Luxfer, the manufacturer of a popular brand of aluminum scuba cylinders of all sizes including the ubiquitous aluminum 80 writes the following about safety and its products… all great advice!

“If the cylinder is used in heavy service then it should be inspected every four months.

“Heavy service” means any one or more of the following:

  • Cylinders being filled or “topped off” five or more times per week;
  • Rental cylinders in use during the ‘season’ and ‘off-season’ times;
  • Cylinders used wherever damage is more likely than in normal use or where the
  • care and/or maintenance is slightly below recommended care.

If the cylinder is known to have had any unusual treatment or condition, it should be immediately visually inspected, prior to its next use.

“Unusual treatment or condition” means if the cylinder:

  • Dropped, fell, was struck, was in an accident, or when the care and maintenance of the cylinder is obviously poor;
  • Was stored improperly, and shows signs of damage;
  • Has obvious corrosion since the last visual inspection;
  • Has a gouge, dent, scrape, cut, dig or, in any way, has been damaged since the last
  • visual inspection;
  • Was stored with water, material or matter inside the cylinder;
  • Shows signs of exposure to fire or high heat, including any one or more of the
  • following:
    • Charring or blistering of the paint or other protective coating;
    • Melting or charring of the metal;
    • Distortion of the cylinder and/or any cylinder accessory;
    • Melting of fuse plugs, valve handwheel, valve protector, and/or any other
  • valve component or cylinder accessory;
  • Has been partially or fully repainted or treated to hide damage and/or
  • fire damage;
  • Is known or suspected to be leaking; or,
  • Is known or suspected of having a crack.”

 

Dive Safe… be careful out there.

Save

Save

Save

Save

Save

Save

Save